Publications by authors named "Lin Weng"

The frequent immune escape of tumor cells and fluctuating therapeutic efficiency vary with each individual are two critical issues for immunotherapy against malignant tumor. Herein, we fabricated an intelligent core-shell nanoparticle (SNAs@CCM) to significantly inhibit the PD-1/PD-L1 mediated immune escape by on-demand regulation of various oncogenic microRNAs and perform RNAs dependent photothermal-immunotherapy to achieve precise and efficient treatment meeting the individual requirements of specific patients by in situ generation of customized tumor-associated antigens. The SNAs@CCM consisted of antisense oligonucleotides grafted gold nanoparticles (SNAs) as core and TLR7 agonist imiquimod (R837) functionalized cancer cell membrane (CCM) as shell, in which the acid-labile Schiff base bond was used to connect the R837 and CCM.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) often recurs aggressively and metastasizes despite surgery and adjuvant therapy, driven by postoperative residual cancer cells near the primary tumor site. An implantable in situ vaccine hydrogel was designed to target residual OSCC cells post-tumor removal. This hydrogel serves as a reservoir for the sustained localized release of δ-aminolevulinic acid (δ-ALA), enhancing protoporphyrin IX-mediated photodynamic therapy (PDT), and a polydopamine-hyaluronic acid composite for photothermal therapy (PTT).

View Article and Find Full Text PDF

Although chemodynamic therapy (CDT) and photothermal therapy (PTT) based on a variety of nanoparticles have been developed to achieve effective anti-bacterial therapy, the limited therapeutic efficiency of CDT alone, as well as the undifferentiated damage of PTT to both bacteria and surrounding healthy tissue are still challenges for their clinical application of infected wounds treatments. In addition, during the CDT and PTT-mediated antimicrobial processes, the endogenous macrophages would be easily converted to pro-inflammatory macrophages (M1 phenotype) under local ROS and hyperthermia to promote inflammation, resulting in unexpected suppression of tissue regeneration and possible wound deterioration. To address these problems, a biodegradable sodium alginate/hyaluronic acid hydrogel loaded with functional CeO-Au nano-alloy (AO@AC) is fabricated to not only achieve precise and efficient antibacterial activity through infection-environment dependent photothermal-chemodynamic therapy but also rapidly eliminate the excess reactive oxygens (ROS) in the M1 type macrophage at the infected area to induce their polarization to M2 type for significant inhibition of inflammation and remarkable enhancement of tissue regeneration, hopefully developing an effective strategy to treat infected wound.

View Article and Find Full Text PDF

Genomic selection (GS) can accomplish breeding faster than phenotypic selection. Improving prediction accuracy is the key to promoting GS. To improve the GS prediction accuracy and stability, we introduce parallel convolution to deep learning for GS and call it a parallel neural network for genomic selection (PNNGS).

View Article and Find Full Text PDF

Complex tissue damage accompanying with bacterial infection challenges healthcare systems globally. Conventional tissue engineering scaffolds normally generate secondary implantation trauma, mismatched regeneration and infection risks. Herein, we developed an easily implanted scaffold with multistep shape memory and photothermal-chemodynamic properties to exactly match repair requirements of each part from the tissue defect by adjusting its morphology as needed meanwhile inhibiting bacterial infection on demand.

View Article and Find Full Text PDF

G-Quadruplex/thioflavin (G4/THT) has become a very promising label-free fluorescent luminescent element for nucleic acid detection due to its good programmability and compatibility. However, the weak fluorescence efficiency of single-molecule G4/THT limits its potential applications. Here, we developed an entropy-driven catalytic (EDC) G4 (EDC-G4) cycle amplification technology as a universal label-free signal amplification and output system by properly programming classical EDC and G4 backbone sequences, preintegrated ligase chain reaction (LCR) for label-free sensitive detection of single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

G-quadruplex/thioflavin T (G4/THT) is one of the ideal label-free fluorescent light-emitting elements in the field of biosensors due to its good programmability and adaptability. However, the unsatisfactory luminous efficiency of single-molecule G4/THT limits its more practical applications. Here, we developed a G4 embedded semi-catalytic hairpin assembly (G4-SCHA) reaction by rationally modifying the traditional CHA reaction, and combined with the invasive reaction, supplemented by magnetic separation technology, for label-free sensitive detection of single nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Background: Rabies is a fatal zoonotic disease whose pathogenesis has not been fully elucidated, and vaccination is the only effective method for protecting against rabies virus infection. Most inactivated vaccines are produced using Vero cells, which are African green monkey kidney cells, to achieve large-scale production. However, there is a potential carcinogenic risk due to nonhuman DNA contamination.

View Article and Find Full Text PDF

The pod and seed counts are important yield-related traits in soybean. High-precision soybean breeders face the major challenge of accurately phenotyping the number of pods and seeds in a high-throughput manner. Recent advances in artificial intelligence, especially deep learning (DL) models, have provided new avenues for high-throughput phenotyping of crop traits with increased precision.

View Article and Find Full Text PDF

Single-nucleotide polymorphism (SNP) is widely used in the study of disease-related genes and in the genetic study of animal and plant strains. Therefore, SNP detection is crucial for biomedical diagnosis and treatment as well as for molecular design breeding of animals and plants. In this regard, this article describes a novel technique for detecting SNP using flap endonuclease 1 (FEN 1) as a specific recognition element and catalytic hairpin assembly (CHA) cascade reaction as a signal amplification strategy.

View Article and Find Full Text PDF

The management of oral squamous cell carcinoma (OSCC) poses significant challenges, leading to organ impairment and ineffective treatment of deep-seated tumors, adversely affecting patient prognosis. A cascade nanoreactor that integrates photodynamic therapy (PDT) and chemodynamic therapy (CDT) for comprehensive multimodal OSCC treatment is introduced. Utilizing iron oxide and mesoporous silica, the FMMSH drug delivery system, encapsulating the photosensitizer prodrug δ-aminolevulinic acid (δ-ALA), is developed.

View Article and Find Full Text PDF

The normal operation of organelles is critical for tumor growth and metastasis. Herein, an intelligent nanoplatform (BMA) is fabricated to perform on-demand destruction of mitochondria and golgi apparatus, which also generates the enhanced photothermal-immunotherapy, resulting in the effective inhibition of primary and metastasis tumor. The BMA has a core of mesoporous silica nanoparticles loaded with brefeldin A (BM), which is connected to ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and folic acid co-modified gold nanoparticles (A).

View Article and Find Full Text PDF

The rate of soybean canopy establishment largely determines photoperiodic sensitivity, subsequently influencing yield potential. However, assessing the rate of soybean canopy development in large-scale field breeding trials is both laborious and time-consuming. High-throughput phenotyping methods based on unmanned aerial vehicle (UAV) systems can be used to monitor and quantitatively describe the development of soybean canopies for different genotypes.

View Article and Find Full Text PDF

Tumor microenvironment (TME), as the "soil" of tumor growth and metastasis, exhibits significant differences from normal physiological conditions. However, how to manipulate the distinctions to achieve the accurate therapy of primary and metastatic tumors is still a challenge. Herein, an innovative nanoreactor (AH@MBTF) is developed to utilize the apparent differences (copper concentration and HO level) between tumor cells and normal cells to eliminate primary tumor based on HO-dependent photothermal-chemodynamic therapy and suppress metastatic tumor through copper complexation.

View Article and Find Full Text PDF

The efficiency of the enzyme-free toehold-mediated strand displacement (TMSD) technique is often insufficient to detect single-nucleotide polymorphism (SNP) that possesses only single base pair mismatch discrimination. Here, we report a novel dual base pair mismatch strategy enabling TMSD biosensing for SNP detection under enzyme-free conditions when coupled with catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET). The strategy is based on a competitive strand displacement reaction mechanism, affected by the thermodynamic stability originating from rationally designed dual base pair mismatch, for the specific recognition of mutant-type DNA.

View Article and Find Full Text PDF

Herein, the vitamin K (VK)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO are explored to fabricate a core-shell-corona nanoparticle (VMMC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMM would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively.

View Article and Find Full Text PDF

Background: Progressive cardiac fibrosis leads to ventricular wall stiffness, cardiac dysfunction, and eventually heart failure, but the underlying mechanism remains unexplored. PDCD5 (programmed cell death 5) ubiquitously expresses in tissues, including the heart; however, the role of PDCD5 in cardiac fibrosis is largely unknown. Therefore, this study aims at exploring the possible role and underlying mechanisms of PDCD5 in the pathogenesis of cardiac fibrosis.

View Article and Find Full Text PDF

The increasing demand of textiles and apparel as global economy booms deepens environmental crisis associated with excessive textile waste disposed by landfill or incineration. This work implemented an eco-friendly and sustainable strategy to recycle up to 50 wt% textile waste with marine bio-based calcium alginate fiber into fire-proof fully bio-based composite textile by carding process. Incorporation of intrinsic nonflammable calcium alginate fibers endowed these needle-punching bio-composite felt with excellent inherent flame retardancy and improved safety.

View Article and Find Full Text PDF

Objectives: Cardiac hypertrophy is the heart's compensatory response stimulated by various pathophysiological factors. However, prolonged cardiac hypertrophy poses a significant risk of progression to heart failure, lethal arrhythmias, and even sudden cardiac death. For this reason, it is crucial to effectively prevent the occurrence and development of cardiac hypertrophy.

View Article and Find Full Text PDF

The excessive copper in tumor cells is crucial for the growth and metastasis of malignant tumor. Herein, we fabricated a nanohybrid to capture, convert and utilize the overexpressed copper in tumor cells, which was expected to achieve copper dependent photothermal damage of primary tumor and copper-deficiency induced metastasis inhibition, generating accurate and effective tumor treatment. The nanohybrid consistsed of 3-azidopropylamine, 4-ethynylaniline and N-aminoethyl-N'-benzoylthiourea (BTU) co-modified gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

Tumor recurrence caused by metastasis is a major cause of death for patients. Thus, a strategy to manipulate the circulating tumor cells (CTCs, initiators of tumor metastasis ) and eliminate them along with the primary tumor has significant clinical significance for malignant tumor therapy. In this study, a magnet-NIR-pH multi-responsive nanosheet (FeO@SiO-GO-PEG-FA/AMP-DOX, ) was fabricated to capture CTCs in circulation, then magnetically transport them to the primary tumor, and finally perform NIR-dependent photothermal therapy as well as acidic-environment-triggered chemotherapy to destroy both the CTCs and the primary tumor.

View Article and Find Full Text PDF

Hemorrhagic shock (HS) is a type of hypovolemic shock characterized by hemodynamic instability, tissue hypoperfusion and cellular hypoxia. In pathophysiology, the gradual accumulation of reactive oxygen species (ROS) damages the mitochondria, leading to irreversible cell damage and the release of endogenous damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (MTDs), eventually triggering the inflammatory response. The novel mitochondria-targeted antioxidant SkQ1 (Visomitin) effectively eliminate excessive intracellular ROS and exhibits anti-inflammatory effects; however, the specific role of SkQ1 in HS has not yet been explicated.

View Article and Find Full Text PDF

Cultivated tomato () is bred for fruit production in optimized environments, in contrast to harsh environments where their ancestral relatives thrive. The process of domestication and breeding has profound impacts on the phenotypic plasticity of plant development and the stress response. Notably, the alternative splicing (AS) of precursor message RNA (pre-mRNA), which is one of the major factors contributing to transcriptome complexity, is responsive to developmental cues and environmental change.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate serum biomarkers linked to primary Sjögren's syndrome (pSS)-associated interstitial lung disease (ILD).

Methods: 69 pSS patients were consecutively enrolled and evaluated via quantitative ILD scoring based on high-resolution computed tomography (HRCT). Biomarkers of interest were assessed by multiplex enzyme-linked immunosorbent assays (ELISAs).

View Article and Find Full Text PDF

Petroleum-based synthetic flame-proof fiber releases toxic volatile organic compounds in thermal decomposition process and has other problems, like tickling feeling and high density. A natural polysaccharide, calcium alginate, is an intrinsic fire-resistant biodegradable material, but its limited mechanical performance prevents it from being a practical flame-retardant fabric. To address this problem, NaCO was doped into alginate spinning solution to obtain generating CaCO nanoparticle-reinforced alginate fiber by microfluidic spinning technique.

View Article and Find Full Text PDF