Publications by authors named "Lin Tie"

Hemorrhagic stroke (HS) mainly includes intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), both of which seriously affect the patient's prognosis. Cerebrospinal fluid (CSF) metabolites and HS showed a link in observational studies. However, the causal association between them is not clear.

View Article and Find Full Text PDF

Advances in symmetry-breaking engineering of heterointerfaces for optoelectronic devices have garnered significant attention due to their immense potential in tunable moiré quantum geometry and enabling polarization light detection. Despite several proposed approaches to breaking the symmetry of low-dimensional materials, there remains a lack of universal methods to create materials with prominent polarization detection capabilities. Here, we introduce a reliable strategy for manipulating the symmetry of low-dimensional materials through a programmable ferroelectric-doping patterns technique.

View Article and Find Full Text PDF

Acquiring multi-dimensional optical information, such as intensity, spectrum, polarization, and phase, can significantly enhance the performance of photodetectors. Incorporating these dimensions allows for improved image contrast, enhanced recognition capabilities, reduced interference, and better adaptation to complex environments. However, the challenge lies in obtaining these dimensions on a single photodetector.

View Article and Find Full Text PDF

Exosomes play a crucial role in facilitating intercellular communication within organisms. Emerging evidence indicates that a distinct variant of programmed cell death ligand-1 (PD-L1), found on the surface of exosomes, may be responsible for orchestrating systemic immunosuppression that counteracts the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy. Specifically, the presence of PD-L1 on exosomes enables them to selectively target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and impeding T cell activation or proliferation.

View Article and Find Full Text PDF

The barrier structure is designed to enhance the operating temperature of the infrared detector, thereby improving the efficiency of collecting photogenerated carriers and reducing dark current generation, without suppressing the photocurrent. However, the development of barrier detectors using conventional materials is limited due to the strict requirements for lattice and band matching. In this study, a high-performance unipolar barrier detector is designed utilizing a black arsenic phosphorus/molybdenum disulfide/black phosphorus van der Waals heterojunction.

View Article and Find Full Text PDF

The utilization of hot carriers as a means to surpass the Shockley-Queasier limit represents a promising strategy for advancing highly efficient photovoltaic devices. Quantum dots, owing to their discrete energy states and limited multi-phonon cooling process, are regarded as one of the most promising materials. However, in practical implementations, the presence of numerous defects and discontinuities in colloidal quantum dot (CQD) films significantly curtails the transport distance of hot carriers.

View Article and Find Full Text PDF

The realization of a controllable transparent conducting system with selective light transparency is crucial for exploring many of the most intriguing effects in top-illuminated optoelectronic devices. However, the performance is limited by insufficient electrical conductivity, low work function, and vulnerable interface of traditional transparent conducting materials, such as tin-doped indium oxide. Here, it is reported that two-dimensional (2D) titanium carbide (Ti C T ) MXene film acts as an efficient transparent conducting electrode for the lead sulfide (PbS) colloidal quantum dots (CQDs) photodiode with controllable near infrared transmittance.

View Article and Find Full Text PDF

Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very-large-scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non-volatile capacitances of a ferroelectric-based memcapacitor with ultralow-power consumption.

View Article and Find Full Text PDF

The very long wave infrared (VLWIR) is an electromagnetic wave with a wavelength range of 15-30 μm, which plays an important role in missile defense and weather monitoring. This paper briefly introduces the development of intraband absorption of colloidal quantum dots (CQDs) and investigates the possibility of using CQDs to produce VLWIR detectors. We calculated the detectivity of CQDs for VLWIR.

View Article and Find Full Text PDF

The two-dimensional layered material CuInPS (CIPS) has attracted significant research attention due to its nontrivial physical properties, including room-temperature ferroelectricity at the ultrathin limit and substantial ionic conductivity. Despite many efforts to control its ionic conductance and develop electronic devices, such as memristors, improving the stability of these devices remains a challenge. This work presents a highly stable threshold-switching device based on the Cu/CIPS/graphene heterostructure, achieved after a comprehensive investigation of the activation of Cu's ionic conductivity.

View Article and Find Full Text PDF

Background: Whether the prognostic nutritional index (PNI), which is suggested to reflect systemic inflammation and nutritional status of patients, could be used as an effective prognostic factor for small-cell lung cancer (SCLC) has not yet been clarified. The purpose of this study was to verify the prognostic value of the PNI in SCLC patients treated with programmed cell death ligand-1/programmed cell death 1 (PD-L1/PD-1) inhibitors in the alpine region of China.

Methods: SCLC patients treated with PD-L1/PD-1 inhibitors monotherapy or combined with chemotherapy between March 2017 and May 2020 were included.

View Article and Find Full Text PDF

With the further miniaturization and integration of multi-dimensional optical information detection devices, polarization-sensitive photodetectors based on anisotropic low-dimension materials have attractive potential applications. However, the performance of these devices is restricted by intrinsic property of materials leading to a small polarization ratio of the detectors. Here, we construct a black phosphorus (BP) homojunction photodetector defined by ferroelectric domains with ultra-sensitive polarization photoresponse.

View Article and Find Full Text PDF

New-generation infrared detectors call for higher operation temperature and polarization sensitivity. For traditional HgCdTe infrared detectors, the additional polarization optics and cryogenic cooling are necessary to achieve high-performance infrared polarization detection, while they can complicate this system and limit the integration. Here, a mixed-dimensional HgCdTe/black phosphorous van der Waals heterojunction photodiode is proposed for polarization-sensitive midwave infrared photodetection.

View Article and Find Full Text PDF

A mass of nanocarriers have been exploited and utilized for prevention of fungi, including organic nanomaterials, inorganic nanoparticles, polypeptides, and viruses. Due to biological safety and flexible genetic engineering property, bacteriophages, as bionanoparticles, are widely used in the diagnosis and treatment of microorganisms, which can be easily loaded with proteins and drugs. In particular, random DNAs can be inserted into the genome of phage by phage display technology, and it is possible to obtain the peptide/antibody targeting fungi from phage library.

View Article and Find Full Text PDF

Flexible optoelectronic devices have numerous applications in personal wearable devices, bionic detectors, and other systems. There is an urgent need for functional materials with appealing electrical and optoelectronic properties, stretchable electrodes with outstanding mechanical flexibility, and gate medium with flexibility and low power consumption. Two-dimensional transition metal dichalcogenides (TMDCs), a novel kind of widely studied optoelectrical material, have good flexibility for their ultrathin nature.

View Article and Find Full Text PDF

Collagen type 1 alpha 1 chain () is an extracellular matrix protein comprising two alpha 1 chains and one alpha 2 chain. Our previous study identified that is the key gene during the development and progression of lung adenocarcinoma by multi-omics analysis. However, the clinical significance of expression in lung cancer samples remains largely unknown.

View Article and Find Full Text PDF

Maternal nutrition can influence the composition of human breastmilk by altering the components that are sensitive to maternal diet pattern. Traditional Tibetan maternal diet pattern among native rural lactating women possesses distinct characteristics due to its unique geographical environment and dietary habits. This study investigated maternal diet pattern and human breastmilk composition of Tibetan lactating women through different lactation stages during the first month postpartum in Shigatse.

View Article and Find Full Text PDF

The objectives of the study were to comprehend the prevalence of hypertension (HTN) and prehypertension (PHT), awareness, treatment, and control of HTN and its distribution in urban, agricultural, pastoral, and semi-agricultural/semi-pastoral areas, and to explore the related factors of HTN among Mongolian adults in China. From August 2018 to August 2020, a multi-stage stratified cluster random sampling method was conducted to investigate the prevalence of HTN among Mongolian adults aged ≥18 years living in China (n = 2558). Inclusion criteria for HTN were systolic blood pressure ≥ 140 mm Hg and/or diastolic blood pressure ≥ 90 mm Hg and/or had hypertensive history and/or taking antihypertensive drugs for HTN.

View Article and Find Full Text PDF

Van der Waals integration with abundant two-dimensional materials provides a broad basis for assembling functional devices. In a specific van der Waals heterojunction, the band alignment engineering is crucial and feasible to realize high performance and multifunctionality. Here, we design a ferroelectric-tuned van der Waals heterojunction device structure by integrating a GeSe/MoS VHJ and poly (vinylidene fluoride-trifluoroethylene)-based ferroelectric polymer.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and fatal type of primary malignant tumours in the central nervous system. Cytokines such as interleukins (ILs) play an important role in GBM progression. Our present study found that IL-24 is down-regulated in GBM cells.

View Article and Find Full Text PDF

The development of novel low-dimensional materials makes the metallic contact to nanostructure facing challenges. Compared to side contacts, end-bonded contacts are proposed to be more effective pathways for charge injection and extraction. However, there is a lack of up-to-date understanding regarding end-bonded contacts, especially the recently emerged high-performance field-effect transistors (FETs).

View Article and Find Full Text PDF

Human milk lipids are an important energy source and essential nutrients for the growth and development of infants. The UPLC/Q-TOF-MS was used to qualitatively and quantitatively analyze human milk lipids. Totally, 411 species of lipids were identified, in which the content of OPL was generally higher than that of OPO; SM (75.

View Article and Find Full Text PDF

The advent of low-dimensional materials with peculiar structure and superb band properties provides a new canonical form for the development of photodetectors. However, the limited exploitation of basic properties makes it difficult for devices to stand out. Here, we demonstrate a hybrid heterostructure with ultrathin vanadium dioxide film and molybdenum ditelluride nanoflake.

View Article and Find Full Text PDF

MoS , one of the most valued 2D materials beyond graphene, shows potential for future applications in postsilicon digital electronics and optoelectronics. However, achieving hole transport in MoS , which is dominated by electron transport, is always a challenge. Here, MoS transistors gated by electrolyte gel exhibit the characteristics of hole and electron transport, a high on/off ratio over 10 , and a low subthreshold swing below 50 mV per decade.

View Article and Find Full Text PDF

Gallium oxide (GaO) has been studied as one of the most promising wide bandgap semiconductors during the past decade. Here, we prepared high quality β-GaO films by pulsed laser deposition. β-GaO films of different thicknesses were achieved and their crystal properties were comprehensively studied.

View Article and Find Full Text PDF