Publications by authors named "Lin Op de Beeck"

Traditional methods of data analysis in animal behavior research are usually based on measuring behavior by manually coding a set of chosen behavioral parameters, which is naturally prone to human bias and error, and is also a tedious labor-intensive task. Machine learning techniques are increasingly applied to support researchers in this field, mostly in a supervised manner: for tracking animals, detecting land marks or recognizing actions. Unsupervised methods are increasingly used, but are under-explored in the context of behavior studies and applied contexts such as behavioral testing of dogs.

View Article and Find Full Text PDF

Laboratory studies indicate global warming may cause changes in locomotor performance directly relevant for fitness and dispersal. Yet, this remains to be tested under seminatural settings, and the connection with warming-induced alterations in the underlying traits has been rarely studied. In an outdoor mesocosm experiment with the damselfly , 4°C warming in the larval stage decreased the flight muscle mass, which correlated with a lower flight endurance.

View Article and Find Full Text PDF

The rapidly increasing rate of urbanization has a major impact on the ecology and evolution of species. While increased temperatures are a key aspect of urbanization ("urban heat islands"), we have very limited knowledge whether this generates differentiation in thermal responses between rural and urban populations. In a common garden experiment, we compared the thermal performance curves (TPCs) for growth rate and mortality in larvae of the damselfly from three urban and three rural populations.

View Article and Find Full Text PDF

To predict the impact of pesticides in a warming world we need to know how species differ in the interaction pathways between pesticides and warming. Trait-based approaches have been successful in identifying the 'pace of life' and body size as predictors of sensitivity to pesticides among distantly related species. However, it remains to be tested whether these traits allow predicting differences in sensitivity to pesticides between closely related species, and in the strength of the interaction pathways between pesticides and warming.

View Article and Find Full Text PDF

There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions.

View Article and Find Full Text PDF

Urbanization is among the most important and globally rapidly increasing anthropogenic processes and is known to drive rapid evolution. Habitats in urbanized areas typically consist of small, fragmented and isolated patches, which are expected to select for a better locomotor performance, along with its underlying morphological traits. This, in turn, is expected to cause differentiation in selection regimes, as populations with different frequency distributions for a given trait will span different parts of the species' fitness function.

View Article and Find Full Text PDF

Global warming and chemical pollution are key anthropogenic stressors with the potential to interact. While warming can change the impact of pollutants and pollutants can change the sensitivity to warming, both interaction pathways have never been integrated in a single experiment. Therefore, we tested the effects of warming and multiple pesticide pulses (allowing accumulation) of chlorpyrifos on upper thermal tolerance (CTmax) and associated physiological traits related to aerobic/anaerobic energy production in the damselfly Ischnura elegans.

View Article and Find Full Text PDF

Current ecological risk assessment of pesticides fails to protect aquatic ecosystem health. To get better insight in how pesticides may affect aquatic ecosystems, we tested how sublethal pesticide concentrations modify body stoichiometry. Moreover, as interactions with natural stressors may cause underestimates of the impact of pesticides, we also tested whether this pathway depended on the presence of predator cues.

View Article and Find Full Text PDF

How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey.

View Article and Find Full Text PDF

The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency.

View Article and Find Full Text PDF

The degree of urbanisation is rapidly increasing worldwide. Due to anthropogenic impact, urban populations are exposed to higher levels of contaminants and higher temperatures. Despite this, urbanisation is a largely overlooked spatial component in ecotoxicology.

View Article and Find Full Text PDF