Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair.
View Article and Find Full Text PDFBackground: Autistic children are prone to experience heightened levels of distress and physiological reactivity to a range of sensory, social, and emotional stimuli. In line with this, multiple studies have demonstrated that autistic children have higher acute cortisol stress responses to adverse or threatening stimuli and altered cortisol awakening responses. However, few studies have examined whether this sensitivity may relate to heightened levels of chronic stress and persistently elevated hypothalamic-pituitary-adrenal (HPA) axis activity.
View Article and Find Full Text PDFWe have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke.
View Article and Find Full Text PDFObjectives: Numerous studies indicate that deep breathing (DB) enhances wellbeing. Multiple deep breathing methods exist, but few employ audio to reach similar results. This study developed audio-guided DB and evaluated its immediate impacts on healthy population via self-created auditory Go/No-Go task, tidal volume changes, and psychological measures.
View Article and Find Full Text PDFRecently, a growing body of evidence has indicated that secondary neurodegeneration after stroke occurs at remote regions of the brain that are connected to the primary infarction site [...
View Article and Find Full Text PDFAims: We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus.
Methods: Recombinant human growth hormone (r-hGH) or saline was delivered (0.
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions.
View Article and Find Full Text PDFBackground: The precise mechanisms underlying the aetiology of post-stroke fatigue remain poorly understood. Inflammation has been associated with clinically significant fatigue across a number of neurological disorders; however, at present there is a lack of evidence regarding the association of fatigue and inflammation in the chronic phase of stroke recovery.
Aims: The aim of this study was to examine fatigue in a cohort of stroke survivors in the chronic phase of stroke, compared with matched controls, and to explore associations between the pro-inflammatory cytokine interleukin-6, high-sensitivity C-reactive Protein and fatigue.
The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood-brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment.
View Article and Find Full Text PDFSchistosomiasis, a neglected tropical disease caused by trematodes of the Schistosoma genus, affects over 250 million people around the world. This disease has been associated with learning and memory deficits in children, whereas reduced attention levels, impaired work capacity, and cognitive deficits have been observed in adults. Strongly correlated with poverty and lack of basic sanitary conditions, this chronic endemic infection is common in Africa, South America, and parts of Asia and contributes to inhibition of social development and low quality of life in affected areas.
View Article and Find Full Text PDFWhite matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood.
View Article and Find Full Text PDFCognitive impairment is a common and disruptive outcome for stroke survivors, which is recognized to be notoriously difficult to treat. Previously, we have shown that low oxygen post-conditioning (LOPC) improves motor function and limits secondary neuronal loss in the thalamus after experimental stroke. There is also emerging evidence that LOPC may improve cognitive function post-stroke.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2021
There is emerging evidence suggesting that a cortical stroke can cause delayed and remote hippocampal dysregulation, leading to cognitive impairment. In this study, we aimed to investigate motor and cognitive outcomes after experimental stroke, and their association with secondary neurodegenerative processes. Specifically, we used a photothrombotic stroke model targeting the motor and somatosensory cortices of mice.
View Article and Find Full Text PDFCerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor.
View Article and Find Full Text PDFFor many chronic stroke survivors, persisting cognitive dysfunction leads to significantly reduced quality of life. Translation of promising therapeutic strategies aimed at improving cognitive function is hampered by existing, disparate cognitive assessments in animals and humans. In this study, we assessed post-stroke cognitive function using a comparable touchscreen-based paired-associate learning task in a cross-sectional population of chronic stroke survivors (≥ 5 months post-stroke, n = 70), age-matched controls (n = 70), and in mice generated from a C57BL/6 mouse photothrombotic stroke model (at six months post-stroke).
View Article and Find Full Text PDFCognitive impairment is common after stroke, and disturbances in hippocampal function are often involved, even in remote non-hippocampal injuries. In terms of hippocampal function, growth hormone (GH) is known to affects plasticity and cognition. We aimed to investigate whether GH treatment after an experimental cortical stroke could enhance remote hippocampal plasticity and the hippocampal-dependent visual discrimination task.
View Article and Find Full Text PDFStroke survivors report significant levels of psychological distress post stroke. To date, most studies conducted have focused on the relationship between psychological stress and functional outcomes in the acute phase of stroke. However, no studies had considered the role of stress over the chronic phase, where stress may continue to exert negative effects on cognitive and psychological processes.
View Article and Find Full Text PDFMotor impairment is the most common and widely recognised clinical outcome after stroke. Current clinical practice in stroke rehabilitation focuses mainly on physical therapy, with no pharmacological intervention approved to facilitate functional recovery. Several studies have documented positive effects of growth hormone (GH) on cognitive function after stroke, but surprisingly, the effects on motor function remain unclear.
View Article and Find Full Text PDF2,3,5-Triphenyltetrazolium chloride (TTC) staining is a commonly used method to determine the volume of the cerebral infarction in experimental stroke models. The TTC staining protocol is considered to interfere with downstream analyses, and it is unclear whether TTC-stained brain samples can be used for biochemistry analyses. However, there is evidence indicating that, with proper optimization and handling, TTC-stained brains may remain viable for protein analyses.
View Article and Find Full Text PDFNumerous clinical studies have documented the high incidence of cognitive impairment after stroke. However, there is only limited knowledge about the underlying mechanisms. Interestingly, there is emerging evidence suggesting that cognitive function after stroke may be affected due to reduced waste clearance and subsequent accumulation of neurotoxic proteins.
View Article and Find Full Text PDFIn the current study, we were interested in investigating whether Low oxygen post-conditioning (LOPC) was capable of limiting the severity of stroke-induced secondary neurodegeneration (SND). To investigate the effect of LOPC we exposed adult male C57/BL6 mice to photothrombotic occlusion (PTO) of the motor and somatosensory cortex. This is known to induce progressive neurodegeneration in the thalamus within two weeks of infarction.
View Article and Find Full Text PDFThe incidence of pituitary dysfunction after severe ischemic stroke is unknown, however given the increasing attention to pituitary dysfunction after neurological injuries such as traumatic brain injury, this may represent a novel area of research in stroke. We perform an arginine and human growth hormone releasing hormone challenge on ischemic stroke patients within a week of symptom onset. Over the study period, 13 patients were successfully tested within a week of stroke (baseline NIHSS 10, range 7-16).
View Article and Find Full Text PDFIt has recently been identified that after motor cortex stroke, the ability of microglia processes to respond to local damage cues is lost from the thalamus, a major site of secondary neurodegeneration (SND). In this study, we combine a photothrombotic stroke model in mice, acute slice and fluorescent imaging to analyse the loss of microglia process responsiveness. The peri-infarct territories and thalamic areas of SND were investigated at time-points 3, 7, 14, 28 and 56 days after stroke.
View Article and Find Full Text PDF