Publications by authors named "Limor Horev-Azaria"

One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members.

View Article and Find Full Text PDF

Background: Cobalt-ferrite nanoparticles (Co-Fe NPs) are attractive for nanotechnology-based therapies. Thus, exploring their effect on viability of seven different cell lines representing different organs of the human body is highly important.

Methods: The toxicological effects of Co-Fe NPs were studied by in-vitro exposure of A549 and NCIH441 cell-lines (lung), precision-cut lung slices from rat, HepG2 cell-line (liver), MDCK cell-line (kidney), Caco-2 TC7 cell-line (intestine), TK6 (lymphoblasts) and primary mouse dendritic-cells.

View Article and Find Full Text PDF

The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.

View Article and Find Full Text PDF

Background: Allicin in garlic is the primary active compound known to rapidly interact with free thiols.

Aims Of The Study: To examine the effect of allicin on gene expression and glutathione cellular level in vascular endothelial cells.

Methods: Cultured endothelial cells were exposed to allicin; mRNA was prepared and subjected to Micro-array and Real-Time PCR.

View Article and Find Full Text PDF

In a previous study, moxifloxacin was shown to ameliorate immunosuppression and enhance cytokine production in several tissues, including the lungs of cyclophosphamide-injected mice. We examined here the effects of moxifloxacin on Candida albicans lung infection in cyclophosphamide-injected mice. Mice were injected on day 0 with 250 mg of cyclophosphamide/kg, and on days 1 to 4 they were given moxifloxacin at 22.

View Article and Find Full Text PDF