Publications by authors named "Limb G"

Introduction: As with any other radial glia in the central nervous system, Müller glia derive from the same neuroepithelial precursors, perform similar functions, and exhibit neurogenic properties as radial glia in the brain. Müller glial cells retain progenitor-like characteristics in the adult human eye and can partially restore visual function upon intravitreal transplantation into animal models of glaucoma. Recently, it has been demonstrated that intracellular communication is possible via the secretion of nano-sized membrane-bound extracellular vesicles (EV), which contain bioactive molecules like microRNA (miRNA) and proteins that induce phenotypic changes when internalised by recipient cells.

View Article and Find Full Text PDF

Glaucomatous optic neuropathy (GON) is the major cause of irreversible visual loss worldwide and can result from a range of disease etiologies. The defining features of GON are retinal ganglion cell (RGC) degeneration and characteristic cupping of the optic nerve head (ONH) due to tissue remodeling, while intraocular pressure remains the only modifiable GON risk factor currently targeted by approved clinical treatment strategies. Efforts to understand the mechanisms that allow species such as the zebrafish to regenerate their retinal cells have greatly increased our understanding of regenerative signaling pathways.

View Article and Find Full Text PDF

Müller glia play very important and diverse roles in retinal homeostasis and disease. Although much is known of the physiological and morphological properties of mammalian Müller glia, there is still the need to further understand the profile of these cells during human retinal development. Using human embryonic stem cell-derived retinal organoids, we investigated the transcriptomic profiles of CD29/CD44 cells isolated from early and late stages of organoid development.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated the harmful effects of antibiotics ciprofloxacin (CPFX) and tetracycline (TETRA) on human retinal Müller cells, focusing on alterations in metabolism, mitochondrial function, and gene expression involved in apoptosis and inflammation.
  • - Results showed that TETRA exposure, particularly at 120 μg/ml, led to increased cell metabolism, reduced mitochondrial membrane potential (MMP), decreased reactive oxygen species (ROS) levels, and changes in the expression of specific genes related to apoptosis and inflammation.
  • - Conversely, CPFX treatment negatively impacted cell metabolism and mitochondrial health, particularly at 120 μg/ml, leading to increased apoptosis-related gene expression and reduced mitochondrial DNA copy numbers, indicating that both antibiotics can
View Article and Find Full Text PDF

Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision.

View Article and Find Full Text PDF

Purpose: A major challenge in glaucoma research is the lack of reproducible animal models of RGC and optic nerve damage, the characteristic features of this condition. We therefore examined the glaucomatous responses of two different rat strains, the Brown Norway (BN) and Lister Hooded (LH) rats, to high intraocular pressure (IOP) induced by injection of magnetic beads into the anterior chamber.

Methods: Magnetic microsphere suspensions (20 µl of 5-20 mg/ml) were injected into the anterior chamber of BN (n = 9) or LH (N = 15) rats.

View Article and Find Full Text PDF

Galectins are carbohydrate binding proteins with high affinity to ß-galactoside containing glycoconjugates. Understanding of the functions of galectins has grown steadily over the past decade, as a result of substantial advancements in the field of glycobiology. Galectins have been shown to be versatile molecules that participate in a range of important biological systems, including inflammation, neovascularisation and fibrosis.

View Article and Find Full Text PDF

Chronic eye diseases are the main cause of vision loss among adults. Among these, retinal degenerative diseases affect millions of people globally, causing permanent loss of cells and organ dysfunction. Despite recent progress in developing stem cell therapies for retinal diseases, methods for delivery remain an area of intense research.

View Article and Find Full Text PDF

Müller glia constitute the main glial cells of the retina. They are spatially distributed along this tissue, facilitating their close membrane interactions with all retinal neurons. Müller glia are characterized by their active metabolic functions, which are neuroprotective in nature.

View Article and Find Full Text PDF

This study examined if, compared to White and African American children, maternal spanking of American Indian children was associated with child externalizing behavior problems. Using a community-based sample of 3,632 children (1,183 White, 2,183 African American, 266 American Indian), multiple-group autoregressive cross-lagged models examined the associations between maternal spanking and child externalizing behavior across the first 5 years of life. Rates of spanking for American Indian and White children were similar at all three time points (age 1, age 3, and age 5).

View Article and Find Full Text PDF

Glaucoma is one of the leading causes of blindness, and there is an ongoing need for new therapies. Recent studies indicate that cell transplantation using Müller glia may be beneficial, but there is a need for novel sources of cells to provide therapeutic benefit. In this study, we have isolated Müller glia from retinal organoids formed by human induced pluripotent stem cells (hiPSCs) in vitro and have shown their ability to partially restore visual function in rats depleted of retinal ganglion cells by NMDA.

View Article and Find Full Text PDF

Müller glia are responsible for the neural retina regeneration observed in fish and amphibians throughout life. Despite the presence of these cells in the adult human retina, there is no evidence of regeneration occurring in humans following disease or injury. It may be possible that factors present in the degenerated retina could prevent human Müller glia from proliferating and neurally differentiating within the diseased retina.

View Article and Find Full Text PDF

Background: Emerging adults aged 18 to 25 are most at-risk for non-medical use of prescription drugs (NMUPD). While the literature dedicated to emerging-adult NMUPD has explored risk and protective factors at an individual level, much less is known regarding how interpersonal and familial factors relate to NMUPD. Because interpersonal bonds can have a significant impact on behavior, familial factors may be important predictors of NMUPD among emerging adults.

View Article and Find Full Text PDF

Purpose: Memantine (MEM) acts on the glutamatergic system by blocking N-methyl-d-aspartate (NMDA) glutamate receptors. The role that MEM plays in protecting retinal cells is unknown. Hydroquinone (HQ) is one of the cytotoxic components in cigarette smoke.

View Article and Find Full Text PDF

Purpose: Despite posterior vitreous detachment being a common ocular event affecting most individuals in an aging population, there is little consensus regarding its precise anatomic definition. We investigated the morphologic appearance and molecular composition of the posterior hyaloid membrane to determine whether the structure clinically observed enveloping the posterior vitreous surface after posterior vitreous detachment is a true basement membrane and to postulate its origin. Understanding the relationship between the vitreous (in both its attached and detached state) and the internal limiting membrane of the retina is essential to understanding the cause of rhegmatogenous retinal detachment and vitreoretinal interface disorders, as well as potential future prophylactic and treatment strategies.

View Article and Find Full Text PDF

Zebrafish spontaneously regenerate the retina after injury. Although the gene expression profile has been extensively studied in this species during regeneration, this does not reflect protein function. To further understand the regenerative process in the zebrafish, we compared the proteomic profile of the retina during injury and upon regeneration.

View Article and Find Full Text PDF

Purpose: To review the incidence and features of vitreoretinal complications of a permanent Boston keratoprosthesis and to report the use and outcomes of 23-gauge vitrectomy to manage vitreoretinal pathology.

Design: Retrospective non-comparative, interventional case series.

Subject, Participants: 27 eyes of 27 patients managed with a Boston keratoprosthesis at Moorfields Eye Hospital over a 3-year period.

View Article and Find Full Text PDF

Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA).

View Article and Find Full Text PDF

Purpose: Brimonidine is a selective alpha-2 adrenergic agonist used to reduce intraocular pressure and it has been shown to have some neuroprotective effects. Hydroquinone (HQ) is a toxicant present in cigarette smoke, and other sources. In this study, we investigated the cyto-protective effects in vitro of Brimonidine on human retinal pigment epithelium cells (ARPE-19) and human retinal Müller cells (MIO-M1) that had been treated with HQ.

View Article and Find Full Text PDF

Retinal gliosis is characterized by biochemical and physiological changes that often lead to Müller glia proliferation and hypertrophy and is a feature of many neuro-degenerative and inflammatory diseases such as proliferative vitreoretinopathy (PVR). Although Müller glia are known to release inflammatory factors and cytokines, it is not clear whether cytokine production by these cells mirrors the pattern of factors present in the gliotic retina. Lysates from normal cadaveric retina and gliotic retinal specimens from patients undergoing retinectomy for treatment of PVR, the Müller cell line MIO-M1 and four human Müller glial cell preparations isolated from normal retina were examined for their expression of cytokines and inflammatory factors using semi-quantitative dot blot antibody arrays and quantitative arrays.

View Article and Find Full Text PDF

Retinal Müller glial cells have already been implicated in age-related macular degeneration (AMD). AMD is characterized by accumulation of toxic amyloid-β peptide (Aβ); the question we raise is as follows: is P2X7 receptor, known to play an important role in several degenerative diseases, involved in Aβ toxicity on Müller cells? Retinal Müller glial cells were incubated with Aβ for 48 h. Cell viability was assessed using the alamarBlue assay and cytotoxicity using the lactate dehydrogenase (LDH) release assay.

View Article and Find Full Text PDF

Müller glia are responsible for the retina regeneration observed in zebrafish. Although the human retina harbors Müller glia with stem cell characteristics, there is no evidence that they regenerate the retina after disease or injury. Transforming growth factor-β (TGFβ) and Wnt signaling regulate retinal neurogenesis and inflammation, but their roles in the neural differentiation of human Müller stem cells (hMSC) are not known.

View Article and Find Full Text PDF

Background: The aim of this study is to evaluate the safety profile of Brilliant Blue G (BBG) with and without exposure to light (L) on three different retinal cell lines.

Method: ARPE-19, R28 and MIO-M1 cells were treated with BBG: 0.125 mg/mL (0.

View Article and Find Full Text PDF

Purpose: Although the rabbit eye is of a similar size to the human eye, our limited understanding of the differences in retinal physiology to other species hinders its use in retinal research. The role of voltage-gated sodium channels (Nav) in the propagation of excitatory potentials along bipolar cells remains unclear, as conflicting data have been reported in the rabbit. The present study assesses the relative contributions of Nav to the scotopic and photopic flash ERGs as well as the wavelength-dependence of Nav blockade on the rabbit flicker ERG.

View Article and Find Full Text PDF