Publications by authors named "Lim Wei Yap"

Electrochemistry-based wearable and wireless sweat analysis is emerging as a promising noninvasive method for real-time health monitoring by tracking chemical and biological markers without the need for invasive blood sampling. It offers the potential to remotely monitor human sweat conditions in relation to metabolic health, stress, and electrolyte balance, which have implications for athletes, patients with chronic conditions, and individuals for the early detection and management of health issues. The state-of-the-art mainstream technology is dominated by the concept of a wearable microfluidic chip, typically based on elastomeric PDMS.

View Article and Find Full Text PDF
Article Synopsis
  • Time-lapse mechanical properties of stem cell-derived cardiac organoids provide crucial insights into heart function and related diseases, but studying these properties in real-time is challenging due to the complexity of the organoids and the limitations of current force sensors.
  • The study presents a novel soft resistive force-sensing diaphragm made from a highly sensitive platinum film, designed to easily integrate with soft culture wells without disrupting the organoids.
  • This advanced diaphragm allows for immediate and accurate measurement of the organoids' contractile forces and beating patterns under various conditions, such as electrical stimulation and drug dosing, enhancing our ability to model heart conditions.
View Article and Find Full Text PDF

Solar-driven hydrogen generation is emerging as an economical and sustainable means of producing renewable energy. However, current photocatalysts for hydrogen generation are mostly powder-based or rigid-substrate-supported, which suffer from limitations, such as difficulties in catalyst regeneration or poor omnidirectional light-harvesting. Here, we report a two-dimensional (2D) flexible photocatalyst based on elastomer-supported black gold nanotube (GNT) arrays with conformal CdS coating and Pt decoration.

View Article and Find Full Text PDF

Mosquito antennae are unique one-dimensional (1D) soft auditory systems, enabling highly sensitive and specific detection of the surrounding acoustic signals for routine movement and communications. Here we report on a mosquito-inspired design of a free-standing 1D acoustic sensor, comprising repeating soft joints (cracked Pt film) and rigid segments (non-cracked Pt film). The soft cracked Pt joints serve as highly sensitive resistive sensors to vibrational strains while the rigid segments are insensitive to acoustic pressures.

View Article and Find Full Text PDF

Background And Objectives: To examine the preferences and user experiences of people with epilepsy and caregivers regarding automated wearable seizure detection devices.

Methods: We performed a mixed-methods systematic review. We searched electronic databases for original peer-reviewed publications between January 1, 2000, and May 26, 2021.

View Article and Find Full Text PDF

Blood pressure (BP) is a cardiovascular parameter which exhibits significant variability. Whilst continuous BP monitoring would be of significant clinical utility. This is particularly challenging outside the hospital environment.

View Article and Find Full Text PDF

Natural leaves are virtually two-dimensional (2D) flexible photocatalytic system. In particular, seagrass can efficiently harvest low-intensity sunlight to drive photochemical reactions continuously in an aqueous solution. To mimic this process, we present a novel 2D hydrogel-integrated photocatalytic sheet based on free-standing nanoassemblies of multifunctional nanohexagons (mNHs).

View Article and Find Full Text PDF

A leaf is a free-standing photocatalytic system that can effectively harvest solar energy and convert CO and HO into carbohydrates in a continuous manner without the need for regeneration or tedious product extraction steps. Despite encouraging advances achieved in designing artificial photocatalysts, most of them function in bulk solution or on rigid surfaces. Here, we report on a 2D flexible photocatalytic system based on close packed Janus plasmene nanosheets.

View Article and Find Full Text PDF

Tissues, which consist of groups of closely packed cell arrays, are essentially sheet-like biosynthesis plants. In tissues, individual cells are discrete microreactors working under highly viscous and confined environments. Herein, soft polystyrene-encased nanoframe (PEN) reactor arrays, as analogous nanoscale "sheet-like chemosynthesis plants", for the controlled synthesis of novel nanocrystals, are reported.

View Article and Find Full Text PDF

Mechanically-gated ion channels play an important role in the human body, whereas it is challenging to design artificial mechanically-controlled ionic transport devices as the intrinsically rigidity of traditional electrodes. Here, we report on a mechanically-gated electrochemical channel by virtue of vertically aligned gold nanowires (v-AuNWs) as 3D stretchable electrodes. By surface modification with a self-assembled 1-Dodecanethiol monolayer, the v-AuNWs become hydrophobic and inaccessible to hydrated redox species (e.

View Article and Find Full Text PDF

In parallel to the burgeoning field of soft electronics, soft plasmonics focuses on the design and fabrication of plasmonic structures supported on elastomers and to understand how their properties respond to mechanical deformations. Here, we report on a partial ligand-stripping strategy to fabricate elastomer-supported gold nanobipyramid (NBP) plasmene nanosheets. Unlike spherelike building blocks, NBP-building blocks display complex orientation-dependent plasmonic responses to external strains.

View Article and Find Full Text PDF

Skin-like optoelectronic sensors can have a wide range of technical applications ranging from wearable/implantable biodiagnostics, human-machine interfaces, and soft robotics to artificial intelligence. The previous focus has been on electrical signal transduction, whether resistive, capacitive, or piezoelectric. Here, we report on "optical skin" strain sensors based on elastomer-supported, highly ordered, and closely packed plasmonic nanocrystal arrays (plasmene).

View Article and Find Full Text PDF

Background: A nanomaterial-based electronic-skin (E-Skin) wearable sensor has been successfully used for detecting and measuring body movements such as finger movement and foot pressure. The ultrathin and highly sensitive characteristics of E-Skin sensor make it a suitable alternative for continuously out-of-hospital lumbar-pelvic movement (LPM) monitoring. Monitoring these movements can help medical experts better understand individuals' low back pain experience.

View Article and Find Full Text PDF

The noninvasive continuous analysis of human sweat is of great significance for improved healthcare diagnostics and treatment in the future, for which a wearable potentiometry-based ion-selective electrode (ISE) has attracted increasing attention, particularly involving ion detection. Note that traditional solid-state ISE electrodes are rigid ion-to-electron transducers that are not conformal to soft human skin and cannot function under stretched states. Here, we demonstrated that vertically aligned mushroom-like gold nanowires (v-AuNW) could serve as stretchable and wearable ion-to-electron transducers for multiplexed, in situ potentiometric analysis of pH, Na, and K in sweat.

View Article and Find Full Text PDF

Invited for this month's cover are the collaborating groups of Prof. Xiaojun Han from Harbin Institute of Technology, China and Prof. Wenlong Cheng from Monash University, Australia.

View Article and Find Full Text PDF

Gold-nanowires (AuNWs)-coated mesostructured silica fibers that have the appearance of a cat's tail have been successfully designed and synthesized. The silica fibers had a Brunauer-Emmett-Teller (BET) surface area of 347 m  g and Barret-Joyner-Halenda (BJH) pore size of 3.8 nm.

View Article and Find Full Text PDF

The wearable industry is on the rise, with a myriad of technical applications ranging from real-time health monitoring, the Internet of Things, and robotics, to name but a few. However, there is a saying "wearable is not wearable" because the current market-available wearable sensors are largely bulky and rigid, leading to uncomfortable wearing experience, motion artefacts, and poor data accuracy. This has aroused a world-wide intensive research quest for novel materials, with the aim of fabricating next-generation ultra-lightweight and soft wearable devices.

View Article and Find Full Text PDF

Emerging next-generation soft electronics will require versatile properties functioning under mechanical compliance, which will involve the use of different types of materials. As a result, control over material interfaces (particularly soft/hard interfaces) has become crucial and is now attracting intensive worldwide research efforts. A series of material and structural interface designs has been devised to improve interfacial adhesion, preventing failure of electromechanical properties under mechanical deformation.

View Article and Find Full Text PDF

Sensitive, specific, yet multifunctional tattoo-like electronics are ideal wearable systems for "any time, any where" health monitoring because they can virtually become parts of the human skin, offering a burdenless "unfeelable" wearing experience. A skin-like, multifunctional electronic tattoo made entirely from gold using a standing enokitake-mushroom-like vertically aligned nanowire membrane in conjunction with a programmable local cracking technology is reported. Unlike previous multifunctional systems, only a single material type is needed for the integrated gold circuits involved in interconnects and multiplexed specific sensors, thereby avoiding the use of complex multimaterials interfaces.

View Article and Find Full Text PDF

We have recently demonstrated that vertically aligned gold nanowires (v-AuNWs) are outstanding material candidates for wearable biomedical sensors toward real-time and noninvasive health monitoring because of their excellent tunable electrical conductivity, biocompatibility, chemical inertness, and wide electrochemical window. Here, we show that v-AuNWs could also be used to design a high-performance wearable pressure sensor when combined with rational structural engineering such as pyramid microarray-based hierarchical structures. The as-fabricated pressure sensor featured a low operation voltage of 0.

View Article and Find Full Text PDF

Droplets suspended by acoustic levitation provide genuine substrate-free environments for understanding unconventional fluid dynamics, evaporation kinetics, and chemical reactions by circumventing solid surface and boundary effects. Using a fully levitated air-water interface by acoustic levitation in conjunction with drying-mediated nanoparticle self-assembly, here, we demonstrate a general approach to fabricating free-standing nanoassemblies, which can totally avoid solid surface effects during the entire process. This strategy has no limitation for the sizes or shapes of constituent metallic nanoparticle building blocks and can also be applied to fabricate free-standing bilayered and trilayered nanoassemblies or even three-dimensional hollow nanoassemblies.

View Article and Find Full Text PDF

The ability of developing highly durable fiber-shaped electronic devices is crucial for next-generation smart textile electronics. Past several years have witnessed encouraging progress made in stretchable fiber-shaped supercapacitors using carbon materials, transition metal oxides, and conducting polymers. Here, we report a dry-spun strategy to produce scalable ultrathin gold nanowire-based fibers, which can lead to highly stretchable fiber-based supercapacitors using a double-helix winding design.

View Article and Find Full Text PDF

Human skin can sense an external object in a location-specific manner, simultaneously recognizing whether it is sharp or blunt. Such tactile capability can be achieved in both natural and stretched states. It is impractical to mimic this tactile function of human skin by designing pixelated sensor arrays across our whole curvilinear human body.

View Article and Find Full Text PDF

Conventional electrodes produced from gold or glassy carbon are outstanding electrochemical platforms for biosensing applications due to their chemical inertness and wide electrochemical window, but are intrinsically rigid and planar in nature. Hence, it is challenging to seamlessly integrate them with soft and curvilinear biological tissues for real-time wearable or implantable electronics. In this work, we demonstrate that vertically gold nanowires (v-AuNWs) possess an enokitake-like structure, with the nanoparticle (head) on one side and nanowires (tail) on the opposite side of the structure, and can serve as intrinsically stretchable, electrochemical electrodes due to the stronger nanowire-elastomer bonding forces preventing from interfacial delamination under strains.

View Article and Find Full Text PDF