ACS Appl Mater Interfaces
January 2025
Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.
View Article and Find Full Text PDFThe development of efficient charge transport layers is crucial for realizing high-performance and stable quantum dot light-emitting diodes (QD-LEDs). The use of a ZnO/ZnMgO bilayer as an electron transporting layer (ETL) has garnered considerable attention. This configuration leverages the high electron mobility of ZnO and the favorable surface state of ZnMgO.
View Article and Find Full Text PDFColloidal quantum dot (QD)-based light-emitting diodes (QD-LEDs) have reached the pinnacle of quantum efficiency and are now being actively developed for next-generation displays and brighter light sources. Previous research has suggested utilizing inorganic hole-transport layers (HTLs) to explore brighter and more stable QD-LEDs. However, the performance metrics of such QD-LEDs with inorganic HTLs generally lag behind those of organic-inorganic hybrid QD-LEDs employing organic HTLs.
View Article and Find Full Text PDFCharge imbalance within the emissive layer (EML) has been identified as a major obstacle to achieving high-performance quantum dot light-emitting diodes (QD-LEDs). To address this issue, we propose the use of a compact diamino-based ligand as a universal approach to improve the charge balance within the QD EML. Specifically, we treat QDs symmetrically with 1,4-diaminobutane (DAB) on both the bottom and top sides.
View Article and Find Full Text PDFThe operating lifetime of quantum-dot light-emitting diodes (QLED) is a bottleneck for commercial display applications. To enhance the operational stability of QLEDs, we developed a robust solution-processed highly conductive hole-transport-layer (HTL) structure, which enables a thick HTL structure to mitigate the electric field. An alternating doping strategy, which involves multiple alternating stacks of 4,4'-di(naphthalen-1-yl)-4,4'-bis(4-vinylphenyl)biphenyl-4,4'-diamine and phosphomolybdic acid layers, could provide significantly improved conductivity; more specifically, the 90 nm-thick alternatingly doped HTL exhibited higher conductivity than the 45 nm-thick undoped HTL.
View Article and Find Full Text PDFQuantum dots (QDs) have garnered a significant amount of attention as promising memristive materials owing to their size-dependent tunable bandgap, structural stability, and high level of applicability for neuromorphic computing. Despite these advantageous properties, the development of QD-based memristors has been hindered by challenges in understanding and adjusting the resistive switching (RS) behavior of QDs. Herein, we propose three types of InP/ZnSe/ZnS QD-based memristors to elucidate the RS mechanism, employing a thin poly(methyl methacrylate) layer.
View Article and Find Full Text PDFExciton-polaritons confined in plasmonic cavities are hybridized light-matter quasiparticles, with distinct optical characteristics compared to plasmons and excitons alone. Here, we demonstrate the electric tunability of a single polaritonic quantum dot operating at room temperature in electric-field tip-enhanced strong coupling spectroscopy. For a single quantum dot in the nanoplasmonic tip cavity with variable dc local electric field, we dynamically control the Rabi frequency with the corresponding polariton emission, crossing weak to strong coupling.
View Article and Find Full Text PDFFunctionalization of quantum dots (QDs) via ligand exchange is prone to debase their photoluminescence quantum yield (PL QY) owing to the unavoidable surface damage by excess reactants, and even worse in aqueous medium. Herein, the oligomeric zinc thiolate as the multidentate hydrophilic ligand featuring facile synthetic protocol is proposed. A simple reaction between ZnCl and 3-mercaptopropionic acid produces oligomeric ligands containing 3-6 zinc thiolate units, where the terminal moieties provide multidentate anchoring to the surface as well as hydrophilicity.
View Article and Find Full Text PDFFormation of charged trions is detrimental to the luminescence quantum efficiency of colloidal quantum dot (QD) thin films as they predominantly undergo nonradiative recombination. In this regard, control of charged trion formation is of interest for both fundamental characterization of the quasi-particles and performance optimization. Using CdSe/CdS QDs as a prototypical material system, here we demonstrate a metal-oxide-semiconductor capacitor based on QD thin films for studying the background charge effect on the luminescence efficiency and lifetime.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
The surface-templated evaporation-driven (S-TED) method that uses liquid-repellent surfaces has attracted considerable attention for its use in fabricating supraparticles of defined shape, size, and porosity. However, challenges in achieving mass production have impeded the widespread adoption of the S-TED method. To overcome this limit, we introduce an evaporation-driven "multiple supraparticle" synthesis by drying arrays of self-lubricating colloidal dispersion microdrops.
View Article and Find Full Text PDFIn this study, we investigate phosphomolybdic acid (PMA), which allows solution processing of quantum dot light-emitting diodes. With its low cost, easy solution processes, and excellent physical and optical properties, PMA is a potential candidate as the hole injection layer (HIL) in optoelectronic devices. We evaluate the physical and electrical properties of PMA using various solvents.
View Article and Find Full Text PDFHeteroepitaxy on colloidal semiconductor nanocrystals is an essential strategy for manipulating their optoelectronic functionalities. However, their practical synthesis typically leads to scattered and unexpected outcomes due to the intervention of multiple reaction pathways associated with complicated side products of reactants. Here, the heteroepitaxy mechanism of zinc chalcogenide initiated on indium phosphide (InP) colloidal nanocrystals is elucidated using the precursors, zinc carboxylate and trialkylphosphine selenide.
View Article and Find Full Text PDFAwareness of environmental control is considered a significant influence on the performance of asthma self-management behaviors, which are involved in maintaining effective asthma control. This study aimed to investigate whether immersive virtual reality (VR) education is effective in environmental control education for asthmatic children in Korea. Thirty asthmatic children aged 9 to 13 years with aeroallergen sensitization were enrolled.
View Article and Find Full Text PDFColloidal quantum dots (QDs) are attractive materials for the realization of solution-processable laser diodes. Primary challenges towards this objective are fast optical-gain relaxation due to nonradiative Auger recombination and poor stability of colloidal QD solids under high current densities required to obtain optical gain. Here we resolve these challenges and achieve broad-band optical gain spanning the band-edge (1S) and the higher-energy (1P) transitions.
View Article and Find Full Text PDFQuantum dot light-emitting diodes (QLEDs) are one of the most promising candidates for next-generation displays and lighting sources, but they are barely used because vulnerability to electrical and thermal stresses precludes high brightness, efficiency, and stability at high current density (J) regimes. Here, bright and stable QLEDs on a Si substrate are demonstrated, expanding their potential application boundary over the present art. First, a tailored interface is granted to the quantum dots, maximizing the quantum yield and mitigating nonradiative Auger decay of the multiexcitons generated at high-J regimes.
View Article and Find Full Text PDFThe past decade has witnessed remarkable progress in the device efficiency of quantum dot light-emitting diodes based on the framework of organic-inorganic hybrid device structure. The striking improvement notwithstanding, the following conundrum remains underexplored: state-of-the-art devices with seemingly unfavorable energy landscape exhibit barrierless hole injection initiated even at sub-band gap voltages. Here, we unravel that the cause of barrierless hole injection stems from the Fermi level alignment derived by the surface states.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
High-resolution patterning of quantum dot (QD) films is one of the preconditions for the practical use of QD-based emissive display platforms. Recently, inkjet printing and transfer printing have been actively developed; however, high-resolution patterning is still limited owing to nozzle-clogging issues and coffee ring effects during the inkjet printing and kinetic parameters such as pickup and peeling speed during the transfer process. Consequently, employing direct optical lithography would be highly beneficial owing to its well-established process in the semiconductor industry; however, exposing the photoresist (PR) on top of the QD film deteriorates the QD film underneath.
View Article and Find Full Text PDFBackground: Recent data suggested that dysbiosis of the gut microbiome is associated with childhood allergic diseases. Oral administration of probiotic formulations may improve the severity of atopic dermatitis (AD) by restoring imbalanced gut microbiota and reducing intestinal inflammation in children.
Objectives: The aim of this study was to investigate the effects of a probiotic mixture on the clinical severity of AD, gut inflammatory markers and alterations in microbiome dysbiosis in children with AD.
The charge injection imbalance into the quantum dot (QD) emissive layer of QD-based light-emitting diodes (QD-LEDs) is an unresolved issue that is detrimental to the efficiency and operation stability of devices. Herein, an integrated approach to harmonize the charge injection rates for bright and stable QD-LEDs is proposed. Specifically, the electronic characteristics of the hole transport layer (HTL) is delicately designed in order to facilitate the hole injection from the HTL into QDs and confine the electron overflow toward the HTL.
View Article and Find Full Text PDFThe emerging technology of colloidal quantum dot electronics provides an opportunity for combining the advantages of well-understood inorganic semiconductors with the chemical processability of molecular systems. So far, most research on quantum dot electronic devices has focused on materials based on Pb- and Cd chalcogenides. In addition to environmental concerns associated with the presence of toxic metals, these quantum dots are not well suited for applications in CMOS circuits due to difficulties in integrating complementary n- and p-channel transistors in a common quantum dot active layer.
View Article and Find Full Text PDFIt has been shown that aerobic exercise improves atopic dermatitis (AD), although the mechanism is not clear. Here, we propose a hypothesis that moderate-intensity aerobic exercise improves AD in a mouse model through modulating allergic inflammation. The DNCB-treated mouse model for eczema was divided into 3 groups: (a) not subjected to aerobic exercise, (b) subjected to continuous aerobic exercise and (c) subjected to accumulated aerobic exercise.
View Article and Find Full Text PDFEstablishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films.
View Article and Find Full Text PDFThe performance of colloidal quantum dot light-emitting diodes (QD-LEDs) have been rapidly improved since metal oxide semiconductors were adopted for an electron transport layer (ETL). Among metal oxide semiconductors, zinc oxide (ZnO) has been the most generally employed for the ETL because of its excellent electron transport and injection properties. However, the ZnO ETL often yields charge imbalance in QD-LEDs, which results in undesirable device performance.
View Article and Find Full Text PDFSuccessful exploitation of semiconductor nanocrystals (NCs) in commercial products is due to the remarkable progress in the wet-chemical synthesis and controlled assembly of NCs. Central to the cadence of this progress is the ability to understand how NC growth and assembly can be controlled kinetically and thermodynamically. The arrested precipitation strategy offers a wide opportunity for materials selection, size uniformity, and morphology control.
View Article and Find Full Text PDF