Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography.
View Article and Find Full Text PDFImidazo[1,2-a]pyridine-based compounds are clinically important to the treatments of heart and circulatory failures, while many are under development for pharmaceutical uses. In this study, a series of imidazo[1,2-a]pyridine-based derivatives 2(a-o) were synthesized by reacting a-haloketones with 2-aminopyridines in a basic media at ambient temperature. Single crystal X-ray diffraction studies suggest that with low degree-of-freedom, the introduction of bulky adamantyl or electron-rich biphenyl moiety into the imidazopyridine derivatives will not affect its structural occupancy.
View Article and Find Full Text PDFEthnopharmacological Relevance: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.
View Article and Find Full Text PDFAdamantyl-based compounds are clinically important for the treatments of type 2 diabetes and for their antiviral abilities, while many more are under development for other pharmaceutical uses. This study focused on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of adamantyl-based ester derivatives with various substituents on the phenyl ring using Ellman's colorimetric method. Compound with a 2,4-dichloro electron-withdrawing substituent on the phenyl ring exhibited the strongest inhibition effect against AChE, with an IC value of 77.
View Article and Find Full Text PDFBiphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety.
View Article and Find Full Text PDFAdamantyl-based compounds are commercially important in the treatments for neurological conditions and type-2 diabetes, aside from their anti-viral abilities. Their values in drug design are chronicled as multi-dimensional. In the present study, a series of 2-(adamantan-1-yl)-2-oxoethyl benzoates, 2(a-q), and 2-(adamantan-1-yl)-2-oxoethyl 2-pyridinecarboxylate, 2r, were synthesized by reacting 1-adamantyl bromomethyl ketone with various carboxylic acids using potassium carbonate in dimethylformamide medium at room temperature.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2012
Ab initio and density functional theory (DFT) calculations on some model systems are presented to assess the extent to which intermolecular hydrogen bonding can affect the planarity of amide groups. Formamide and urea are examined as archetypes of planar and non-planar amides, respectively. DFT optimisations suggest that appropriately disposed hydrogen-bond donor or acceptor molecules can induce non-planarity in formamide, with OCNH dihedral angles deviating by up to ca.
View Article and Find Full Text PDFWe report the crystal structure of L-arginine, one of the last remaining natural amino acids for which the crystal structure has never been determined; structure determination was carried out directly from powder X-ray diffraction (XRD) data, exploiting the direct-space genetic algorithm technique for structure solution followed by Rietveld refinement.
View Article and Find Full Text PDF