The aureolic acid antitumor antibiotic mithramycin (MTM) inhibits both cancer growth and bone resorption by cross-linking GC-rich DNA, thus blocking binding of Sp-family transcription factors to gene regulatory elements. Transcription of c-src, a gene implicated in many human cancers and required for osteoclast-dependent bone resorption, is regulated by the binding of Sp factors to specific elements in its promoter. Therefore, this gene represents an important anticancer target and a potential lead target through which MTM displays its so far uncharacterized action against osteoclastic bone resorption.
View Article and Find Full Text PDFTo gain initial structure-activity relationships regarding the highly functionalized pentyl side chain attached at C-3 of mithramycin (MTM), we focused on a post-polyketide synthase (post-PKS) tailoring step of the MTM biosynthesis by Streptomyces argillaceus ATCC 12956, which was proposed to be catalyzed by ketoreductase (KR) MtmW. In this last step of the MTM biosynthesis, a keto group of the pentyl side chain is reduced to a secondary alcohol, and we anticipated the generation of an MTM derivative with an additional keto group in the 3-side chain. Insertional inactivation of mtmW, a gene located ca.
View Article and Find Full Text PDFThis review covers the highlights of combinatorial biosynthesis applied on post-polyketide synthase modifying enzymes, such as oxygenases. ketoreductases, glycosyl- and methyltransferases, acyltransferases, halogenases, cyclases and aminotransferases Since this is the first review on this topic, it covers literature from 1985 to 2002, and 248 references are given.
View Article and Find Full Text PDFHeterologous expression of the urdGT2 gene from the urdamycin producer Streptomyces fradiae Tü2717, which encodes a C-glycosyltransferase, into mutants of the mithramycin producer Streptomyces argillaceus, in which either one or all glycosyltransferases were inactivated, yielded four novel C-glycosylated premithramycin-type molecules. Structure elucidation revealed these to be 9-C-olivosylpremithramycinone, 9-C-mycarosylpremithramycinone, and their respective 4-O-demethyl analogues. In another experiment, both the urdGT2 gene from S.
View Article and Find Full Text PDFMithramycin is an aureolic acid-type antimicrobial and antitumor agent produced by Streptomyces argillaceus. Modifying post-polyketide synthase (PKS) tailoring enzymes involved in the production of mithramycin is an effective way of gaining further information regarding the late steps of its biosynthetic pathway. In addition, new "unnatural" natural products of the aureolic acid-type class are likely to be produced.
View Article and Find Full Text PDF