Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested.
View Article and Find Full Text PDFPaternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown.
View Article and Find Full Text PDFThe optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins) can reversibly activate or suppress neuronal activity with precise temporal control.
View Article and Find Full Text PDFHomeostatic plasticity mechanisms are employed by neurons to alter membrane excitability and synaptic strength to adapt to changes in network activity. Recent studies suggest that homeostatic processes can occur not only on a global scale but also within specific neuronal subcompartments, involving a wide range of molecules and signalling pathways. Here, we review new findings into homeostatic adaptation within dendrites and discuss potential signalling components and mechanisms that may mediate this local form of regulation.
View Article and Find Full Text PDFAt synapses, cell adhesion molecules (CAMs) provide the molecular framework for coordinating signaling events across the synaptic cleft. Among synaptic CAMs, the integrins, receptors for extracellular matrix proteins and counterreceptors on adjacent cells, are implicated in synapse maturation and plasticity and memory formation. However, little is known about the molecular mechanisms of integrin action at central synapses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2007
The precise contribution of the cadherin-beta-catenin synapse adhesion complex in the functional and structural changes associated with the pre- and postsynaptic terminals remains unclear. Here we report a requirement for endogenous beta-catenin in regulating synaptic strength and dendritic spine morphology in cultured hippocampal pyramidal neurons. Ablating beta-catenin after the initiation of synaptogenesis in the postsynaptic neuron reduces the amplitude of spontaneous excitatory synaptic responses without a concurrent change in their frequency and synapse density.
View Article and Find Full Text PDFThis protocol describes a method for making and culturing rat hippocampal organotypic slices on membrane inserts. Supplementary videos are included to demonstrate visually the different steps of the procedure. Cultured hippocampal slices has been increasingly used as a model for synaptic studies of the brain as they allow examination of mid to long term manipulations in a preparation where the gross cytoarchitecture of the hippocampus is preserved.
View Article and Find Full Text PDF