Metabolic requirements vary during development, and our understanding of how metabolic activity influences cell specialization is incomplete. Here, we describe a switch from glutamine catabolism to synthesis required for erythroid cell maturation. Glutamine synthetase (GS), one of the oldest functioning genes in evolution, is activated during erythroid maturation to detoxify ammonium generated from heme biosynthesis, which is up-regulated to support hemoglobin production.
View Article and Find Full Text PDFHypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC).
View Article and Find Full Text PDFWe found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R).
View Article and Find Full Text PDFMitochondria are vital organelles that coordinate cellular energy homeostasis and have important roles in cell death. Therefore, the removal of damaged or excessive mitochondria is critical for maintaining proper cellular function. The PINK1-Parkin pathway removes acutely damaged mitochondria through a well-characterized mitophagy pathway, but basal mitochondrial turnover occurs via distinct and less well-understood mechanisms.
View Article and Find Full Text PDFMore than 50 years of efforts to identify the major cytokine responsible for red blood cell (RBC) production (erythropoiesis) led to the identification of erythropoietin (EPO) in 1977 and its receptor (EPOR) in 1989, followed by three decades of rich scientific discovery. We now know that an elaborate oxygen-sensing mechanism regulates the production of EPO, which in turn promotes the maturation and survival of erythroid progenitors. Engagement of the EPOR by EPO activates three interconnected signaling pathways that drive RBC production via diverse downstream effectors and simultaneously trigger negative feedback loops to suppress signaling activity.
View Article and Find Full Text PDFIn this issue of , Ma et al discuss their discovery of a novel function of G protein pathway suppressor 2 (GPS2) in promoting erythroid differentiation through stabilizing the erythroid master regulator erythroid Krüppel-like factor (EKLF, also known as KLF1).
View Article and Find Full Text PDFBackground: Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear.
Methods: We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression.
The erythropoietin receptor (EpoR) is widely expressed but its renoprotective action is unexplored. To examine the role of EpoR in vivo in the kidney, we induced acute kidney injury (AKI) by ischemia-reperfusion in mice with different EpoR bioactivities in the kidney. EpoR bioactivity was reduced by knockin of wild-type human EpoR, which is hypofunctional relative to murine EpoR, and a renal tubule-specific EpoR knockout.
View Article and Find Full Text PDFThe NELF complex is a metazoan-specific factor essential for establishing transcription pausing. Although NELF has been implicated in cell fate regulation, the cellular regulation of NELF and its intrinsic role in specific lineage differentiation remains largely unknown. Using mammalian hematopoietic differentiation as a model system, here we identified a dynamic change of NELF-mediated transcription pausing as a novel mechanism regulating hematopoietic differentiation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2017
Type I and II cytokine receptors are cell surface sensors that bind cytokines in the extracellular environment and initiate intracellular signaling to control processes such as hematopoiesis, immune function, and cellular growth and development. One key mechanism that regulates signaling from cytokine receptors is through receptor endocytosis. In this mini-review, we describe recent advances in endocytic regulations of cytokine receptors, focusing on new paradigms by which PI3K controls receptor endocytosis through both kinase activity-dependent and -independent mechanisms.
View Article and Find Full Text PDFNew therapeutic approaches are needed to treat leukemia effectively. Dietary restriction regimens, including fasting, have been considered for the prevention and treatment of certain solid tumor types. However, whether and how dietary restriction affects hematopoietic malignancies is unknown.
View Article and Find Full Text PDFThe mechanisms by which JAK2 is activated by the prevalent pseudokinase (JH2) V617F mutation in blood cancers remain elusive. Via structure-guided mutagenesis and transcriptional and functional assays, we identify a community of residues from the JH2 helix αC, SH2-JH2 linker and JH1 kinase domain that mediate V617F-induced activation. This circuit is broken by altering the charge of residues along the solvent-exposed face of the JH2 αC, which is predicted to interact with the SH2-JH2 linker and JH1.
View Article and Find Full Text PDFNitrogen permease regulator-like 2 (NPRL2) is a component of a conserved complex that inhibits mTORC1 (mammalian Target Of Rapamycin Complex 1) in response to amino acid insufficiency. Here, we show that NPRL2 is required for mouse viability and that its absence significantly compromises fetal liver hematopoiesis in developing embryos. Moreover, NPRL2 KO embryos have significantly reduced methionine levels and exhibit phenotypes reminiscent of cobalamin (vitamin B12) deficiency.
View Article and Find Full Text PDFBackground: Exogenous cytokines, such as platelet-derived growth factor (PDGF)-B, can augment wound healing, but sustained delivery to maintain therapeutic levels remains a problem. "Genome editing" is a new technology in which precise genome modifications are made within cells using engineered site-specific nucleases. Genome editing avoids many of the complications associated with traditional gene therapy and the use of viral vectors, including random integration, imprecise gene expression, and inadvertent oncogene activation.
View Article and Find Full Text PDFMitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain.
View Article and Find Full Text PDFA challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells.
View Article and Find Full Text PDFErythropoietin (Epo) binding to the Epo receptor (EpoR) elicits downstream signaling that is essential for red blood cell production. One important negative regulatory mechanism to terminate Epo signaling is Epo-induced EpoR endocytosis and degradation. Defects in this mechanism play a key role in the overproduction of erythrocytes in primary familial and congenital polycythemia (PFCP).
View Article and Find Full Text PDFUnderstanding of principles governing selective and sensitive cancer targeting is critical for development of chemicals for cancer diagnostics and treatment. We determined the underlying mechanisms of how a novel fluorescent small organic molecule, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), selectively labels cancer cells but not normal cells. We show that BMVC is retained in the lysosomes of normal cells.
View Article and Find Full Text PDFAlthough the role of the erythropoietin (EPO) receptor (EpoR) in erythropoiesis has been known for decades, its role in nonhematopoietic tissues is still not well defined. Klotho has been shown and EPo has been suggested to protect against acute ischemia-reperfusion injury in the kidney. Here we found in rat kidney and in a rat renal tubular epithelial cell line (NRK cells) EpoR transcript and antigen, and EpoR activity signified as EPo-induced phosphorylation of Jak2, ErK, Akt, and Stat5 indicating the presence of functional EpoR.
View Article and Find Full Text PDFThe Janus Kinase 2 (JAK2) plays essential roles in transmitting signals from multiple cytokine receptors, and constitutive activation of JAK2 results in hematopoietic disorders and oncogenesis. JAK2 kinase activity is negatively regulated by its pseudokinase domain (JH2), where the gain-of-function mutation V617F that causes myeloproliferative neoplasms resides. In the absence of a crystal structure of full-length JAK2, how JH2 inhibits the kinase domain (JH1), and how V617F hyperactivates JAK2 remain elusive.
View Article and Find Full Text PDFPure erythroid leukemia is a rare subtype of acute erythroid leukemia that is characterized by a predominant erythroid population, and erythroblastic sarcoma has not yet been described in the English literature. Here, we report a first case of erythroblastic sarcoma that presented as bilateral ovarian masses in a 3 ½-month-old infant girl with pure erythroid leukemia. Bone marrow aspirate and biopsy showed that the marrow was completely replaced by large-sized blasts consistent with erythroblasts.
View Article and Find Full Text PDFUbiquitination is a common mechanism of down-regulation of mitogenic receptors. Here, we show that ubiquitination of the erythropoietin receptor (EpoR) at Lys(256) is necessary and sufficient for efficient Epo-induced receptor internalization, whereas ubiquitination at Lys(428) promotes trafficking of activated receptors to the lysosomes for degradation. Interestingly, EpoR that cannot be ubiquitinated has reduced mitogenic activities and ability to stimulate the STAT5, Ras/MAPK, and PI3K/AKT signaling pathways.
View Article and Find Full Text PDFRearrangements of JAK2 are rare and have been described in various hematological neoplasms. We report a novel JAK2 rearrangement resulting from a t(9;22)(p24;q11.2) in a 14-year-old male with a diagnosis of B lymphoblastic leukemia.
View Article and Find Full Text PDF