Publications by authors named "Lily Hoa"

Aberrant promoter DNA hypermethylation is a hallmark of cancer; however, whether this is sufficient to drive cellular transformation is not clear. To investigate this question, we use a CRISPR-dCas9 epigenetic editing tool, where an inactive form of Cas9 is fused to DNA methyltransferase effectors. Using this system, here we show simultaneous de novo DNA methylation of genes commonly methylated in cancer, CDKN2A, RASSF1, HIC1 and PTEN in primary breast cells isolated from healthy human breast tissue.

View Article and Find Full Text PDF

The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction.

View Article and Find Full Text PDF

By controlling the YAP1 proto-oncoprotein Hippo signalling plays important roles in cancer-associated processes. Current evidence suggests that the Hippo kinases MST1/2 together with the MOB1 scaffold protein promote the formation of active MOB1/LATS complexes which phosphorylate and thereby inhibit YAP1. However, the regulatory mechanisms of MST1/2-MOB1-LATS signalling are currently underinvestigated.

View Article and Find Full Text PDF

Inactivation of the tumor suppressor gene RASSF1A by promoter hypermethylation represents a key event underlying the initiation and progression of lung cancer. RASSF1A inactivation is also associated with poor prognosis and may promote metastatic spread. In this study, we investigated how RASSF1A inactivation conferred invasive phenotypes to human bronchial cells.

View Article and Find Full Text PDF

Autophagy plays key roles in development, oncogenesis, cardiovascular, metabolic, and neurodegenerative diseases. Hence, understanding how autophagy is regulated can reveal opportunities to modify autophagy in a disease-relevant manner. Ideally, one would want to functionally define autophagy regulators whose enzymatic activity can potentially be modulated.

View Article and Find Full Text PDF

Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic.

View Article and Find Full Text PDF

The human MST1/hMOB1/NDR1 tumour suppressor cascade regulates important cellular processes, such as centrosome duplication. hMOB1/NDR1 complex formation appears to be essential for NDR1 activation by autophosphorylation on Ser281 and hydrophobic motif (HM) phosphorylation at Thr444 by MST1. To dissect these mechanistic relationships in MST1/hMOB1/NDR signalling, we designed NDR1 variants carrying modifications that mimic HM phosphorylation and/or abolish hMOB1/NDR1 interactions.

View Article and Find Full Text PDF

The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified.

View Article and Find Full Text PDF