Publications by authors named "Lily Carnegie-Peake"

Purpose: Dosimetry is rarely performed for the treatment of differentiated thyroid cancer patients with Na[I]I (radioiodine), and information regarding absorbed doses delivered is limited. Collection of dosimetry data in a multi-centre setting requires standardised quantitative imaging and dosimetry. A multi-national, multi-centre clinical study was performed to assess absorbed doses delivered to normal organs for differentiated thyroid cancer patients treated with Na[I]I.

View Article and Find Full Text PDF

Introduction: The optimal strategy for differentiated thyroid cancer (DTC) patients treated with radioiodine (RAI) following thyroidectomy remains controversial. Multi-centre clinical studies are essential to identify strategies to improve patient outcomes while minimising treatment-induced toxicity.

Materials And Methods: The INSPIRE clinical trial (ClinicalTrials.

View Article and Find Full Text PDF

Background: Accurate quantification of radioactivity in a source of interest relies on accurate registration between SPECT and anatomical images, and appropriate correction of partial volume effects (PVEs). For small volumes, exact registration between the two imaging modalities and recovery factors used to correct for PVE are unreliable. There is currently no guidance relating to quantification or the associated uncertainty estimation for small volumes.

View Article and Find Full Text PDF

Patients with Graves' disease are commonly treated with radioiodine. There remains controversy over whether the aim of treatment should be to achieve euthyroidism or hypothyroidism, and whether treatments should be administered with standard levels of radioactivity or personalized according to the radiation absorbed doses delivered to the thyroid. The aim of this review was to investigate whether a relationship exists between radiation absorbed dose and treatment outcome.

View Article and Find Full Text PDF

Biokinetic models developed for healthy humans are not appropriate to describe biokinetics in thyroid cancer patients following thyroidectomy. The aim of this study was to adjust the population model for iodine proposed by the International Commission on Radiological Protection (ICRP) for the use in these patients. Rate constants of the ICRP publication 128 model for iodine were adjusted using the population modelling software package Monolix to describe activity retention in whole-body, thyroid, blood and protein-bound iodine observed in 23 patients.

View Article and Find Full Text PDF