Publications by authors named "Lily A Trunck"

Identification of a novel class of anti-Burkholderia compounds is key in addressing antimicrobial resistance to current therapies as well as naturally occurring resistance. The FabI enoyl-ACP reductase in Burkholderia is an underexploited target that presents an opportunity for development of a new class of inhibitors. A library of substituted diphenyl ethers was used to identify FabI1-specific inhibitors for assessment in Burkholderia pseudomallei ex vivo and murine efficacy models.

View Article and Find Full Text PDF

Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B.

View Article and Find Full Text PDF

Colony morphology variation of Burkholderia pseudomallei is a notable feature of a proportion of primary clinical cultures from patients with melioidosis. Here, we examined the hypothesis that colony morphology switching results in phenotypic changes associated with enhanced survival under adverse conditions. We generated isogenic colony morphology types II and III from B.

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei is intrinsically resistant to aminoglycosides and macrolides, mostly due to AmrAB-OprA efflux pump expression. We investigated the molecular mechanisms of aminoglycoside susceptibility exhibited by Thai strains 708a, 2188a, and 3799a.

Methodology/principal Findings: qRT-PCR revealed absence of amrB transcripts in 708a and greatly reduced levels in 2188a and 3799a.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the etiologic agent of melioidosis, a rare but serious tropical disease. In the United States, genetic research with this select agent bacterium is strictly regulated. Although several select agent compliant methods have been developed for allelic replacement, all of them suffer from some drawbacks, such as a need for specific host backgrounds or use of minimal media.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the aetiological agent of melioidosis. Therapy for this disease is lengthy and limited to only a few antibiotics because of this bacterium's intrinsic antibiotic resistance to many clinically useful antibiotics. These properties of B.

View Article and Find Full Text PDF

Burkholderia psedudomallei is the etiologic agent of melioidosis, and the bacterium is listed as a potential agent of bioterrorism because of its low infectious dose, multiple infectious routes, and intrinsic antibiotic resistance. To further accelerate research with this understudied bacterium, we developed a Himar1-based random mutagenesis system for B. pseudomallei (HimarBP).

View Article and Find Full Text PDF

Although Pseudomonas aeruginosa is an opportunistic pathogen that does not often naturally infect alternate hosts, such as plants, the plant-P. aeruginosa model has become a widely recognized system for identifying new virulence determinants and studying the pathogenesis of the organism. Here, we examine how both host factors and P.

View Article and Find Full Text PDF