Publications by authors named "Lilong Xiong"

Article Synopsis
  • * However, issues like low electrical conductivity and clumping limit their effectiveness in batteries.
  • * A modified phenazine-based organic polymer (PDPPZ) synthesized at 165 °C shows enhanced porous structure, leading to improved charge transfer and a high capacity retention of 86.4% after 500 cycles in sodium dual-ion batteries.
View Article and Find Full Text PDF

Aluminum batteries have become the most attractive next-generation energy storage battery due to their advantages of high safety, high abundance, and low cost. However, the dendrite problem associated with inhomogeneous electrodeposition during cycling leads to low Coulombic efficiency and rapid short-circuit failure of the aluminum metal anode, which severely hampers the cycling stability of aluminum battery. Here we show an aluminum anode material that achieves high lattice matching between the substrate and the deposit, allowing the aluminum deposits to maintain preferred crystal plane growth on the substrate surface.

View Article and Find Full Text PDF

Endowing aqueous supercapacitors (SCs) with high voltage is of great practical significance, but it is restricted by the water decomposition reaction occurring in the electrodes. Here, a novel surface treatment strategy is proposed to inhibit the hydrogen evolution reaction/oxygen evolution reaction at the cathode and anode by forming a passivation layer at the whole electrode surface, which widens the electrochemical stability window of the electrode and working voltage of the aqueous SCs. In addition, the cathode overpotential is increased from -1.

View Article and Find Full Text PDF

Background And Objectives: To investigate the capacity of clinical nutrition services in secondary and tertiary hospitals in the Sichuan Province, China.

Methods And Study Design: Convenience sampling was used. E-questionnaires were distributed to all eligible medical institutions in Sichuan through the official network of provincial and municipal clinical nutrition quality control centers.

View Article and Find Full Text PDF

Polypyrrole (PPy), as a representative p-type conductive polymer, attracts wide attention for energy storage materials. However, the sluggish reaction kinetics and low specific capacity of PPy impede its application in high-power lithium-ion batteries (LIBs). Herein, tubular PPy with chloride and methyl orange (MO) anionic dopants is synthesized and investigated as an anode for LIBs.

View Article and Find Full Text PDF

Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials.

View Article and Find Full Text PDF

The purpose of this study was to improve the bioavailability of carbamazepine (CBZ), a poorly water-soluble antiepileptic drug, via modified-release amorphous solid dispersions (mr-ASD) by a thin film freezing (TFF) process. Three types of CBZ-mr-ASD with immediate-, delayed-, and controlled-release properties were successfully prepared with HPMC E3 (hydrophilic), L100-55 (enteric), and cellulose acetate (CA, lipophilic), defined as CBZ-ir-ASD, CBZ-dr-ASD, and CBZ-cr-ASD, respectively. A dry granulation method was used to prepare CBZ-mr-ASD capsule formulations.

View Article and Find Full Text PDF

Bushen Pills (BSPs), as a traditional Chinese medicine (TCM), is widely used in clinic to enrich Yang, nourish Yin, stem essence, and strengthen kidneys. Two chromatographic methods, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), were applied to analyze the multiple active components of BSPs in dosage form for quality evaluation and in rat plasma for pharmacokinetics study, respectively. Three active constituents of BSPs, including paeoniflorin (PF), berberine hydrochloride (BBR), and schizandrin (SCH), were simultaneously determined by the established LC-MS method with electrospray ionization (ESI) in positive selected ion monitoring (SIM) mode at / 503.

View Article and Find Full Text PDF

Coulombic efficiency especially in the first cycle, cycling stability, and high-rate performance are crucial factors for commercial Li-ion batteries (LIBs). To improve them, in this work, Al2O3-coated natural graphite powder was obtained through a low-cost and facile sol-gel method. Based on a comparison of various coated amounts, 0.

View Article and Find Full Text PDF

Titanium dioxide (TiO2) is an attractive anode material for energy storage devices due to its low-volume-change and high safety. However, TiO2 anodes usually suffer from poor electrical and ionic conductivity, thus causing dramatic degradation of electrochemical performance at rapid charge/discharge rates, which has hindered its use in energy storage devices. Here, we present a novel strategy to address this main obstacle via using nanoarchitectured TiO2 anode consisting of mesoporous TiO2 wrapped in carbon on a tunnel-like etched aluminum substrate prepared by a simple one-step approach.

View Article and Find Full Text PDF

A simple model on the evolution mechanism of PPy capacitance during prolonged cycling offers a reasonably description on the rapid increase and decay of PPy capacitance in 1 M 1-ethyl-3-methylimidazolium tetrafluoroborate/propylene carbonate (EtMeImBF4/PC). The capacitance of PPy films reached a very high specific capacitance of 420 F·g(-1) after 15 cycles when they worked in 1 M MeEt3ImBF4/PC. However, the capacitance rapidly decreased to 5% after only 400 cycles.

View Article and Find Full Text PDF