Publications by authors named "Lilong Lin"

Background: The role of statin therapy in the development of kidney disease in patients with type 2 diabetes mellitus (DM) remains uncertain. We aimed to determine the relationships between statin initiation and kidney outcomes in patients with type 2 DM.

Methods: Through a new-user design, we conducted a multicentre retrospective cohort study using the China Renal Data System database (which includes inpatient and outpatient data from 19 urban academic centres across China).

View Article and Find Full Text PDF

Background: The therapeutic efficacy of mesenchymal stem cells (MSCs) of different tissue origins on metabolic disorders can be varied in many ways but remains poorly defined. Here we report a comprehensive comparison of human MSCs derived from umbilical cord Wharton's jelly (UC-MSCs), dental pulp (PU-MSCs), and adipose tissue (AD-MSCs) on the treatment of glucose and lipid metabolic disorders in type II diabetic mice.

Methods: Fourteen-to-fifteen-week-old male C57BL/6 db/db mice were intravenously administered with human UC-MSCs, PU-MSCs, and AD-MSCs at various doses or vehicle control once every 2 weeks for 6 weeks.

View Article and Find Full Text PDF

Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy against the PD-1/PD-L1 axis, it induces sustained responses in a sizeable minority of cancer patients due to the activation of immunosuppressive factors such as myeloid-derived suppressor cells (MDSCs). Inhibiting the immunosuppressive function of MDSCs is critical for successful cancer ICB therapy. Interestingly, lipid metabolism is a crucial factor in modulating MDSCs function.

View Article and Find Full Text PDF

Aims: The canonical Wnt signaling pathway plays an essential role in blood-brain barrier integrity and intracerebral hemorrhage in preclinical stroke models. Here, we sought to explore the association between canonical Wnt signaling and hemorrhagic transformation (HT) following intravenous thrombolysis (IVT) in acute ischemic stroke (AIS) patients as well as to determine the underlying cellular mechanisms.

Methods: 355 consecutive AIS patients receiving IVT were included.

View Article and Find Full Text PDF

Both metabolic switch from oxidative phosphorylation to glycolysis (OGS) and epithelial-mesenchymal transition (EMT) promote cellular reprogramming at early stages. However, their connections have not been elucidated. Here, when a chemically defined medium was used to induce early EMT during mouse reprogramming, a facilitated OGS was also observed at the same time.

View Article and Find Full Text PDF

Tumor cells often exhibit augmented capacity to maintain endoplasmic reticulum (ER) homeostasis under adverse conditions, yet the underlying mechanisms are not well defined. Here, through the evaluation of all human TRIM proteins, we find that TRIM25 is significantly induced upon ER stress. Upregulation of TRIM25 ameliorates oxidative stress, promotes ER-associated degradation (ERAD), and reduces IRE1 signaling in the UPR pathway.

View Article and Find Full Text PDF

Acetaminophen (APAP) is one of the most commonly used drugs worldwide, and APAP-induced liver injury is the most frequent cause of acute liver failure in developed countries. However, the mechanisms of APAP-induced hepatotoxicity are not well understood, and treatment options for the disorder are very limited. Here, we show that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a major mediator of APAP-induced liver injury in mice, and its blockade markedly ameliorates the liver failure.

View Article and Find Full Text PDF

Choriocarcinoma is characterized by malignant proliferation and transformation of trophoblasts and is currently treated with systemic chemotherapeutic agents. The lack of specific targets for chemotherapeutic agents results in indiscriminate drug distribution. In our study, we aimed to delineate the mechanism by which G protein-coupled receptor 1 (GPR1) regulates the development of choriocarcinoma and thus investigated GPR1 as a prospective chemotherapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between lipoprotein(a) [Lp(a)] levels and the severity of coronary artery stenosis in patients diagnosed with coronary artery disease (CAD).
  • It categorizes 531 patients into high and low Lp(a) groups and evaluates the correlation between Lp(a) levels and various aspects of CAD, including the presence of stable angina or acute coronary syndrome.
  • Results show that high Lp(a) levels correlate with an increased risk of CAD and are linked to more severe coronary artery blockage, indicating that Lp(a) could be a critical factor in assessing CAD risk.
View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) induce mesenchymal-epithelial transition (MET) and enhance the generation of induced pluripotent stem cells (iPSCs). However, BMPs are also signaling molecules critical for arresting reprogramming in the pre-iPSC state. In this study, using mouse embryonic fibroblasts, we found that the time- and concentration-dependent effects of BMPs on reprogramming are mediated by Msh homeobox 2 (MSX2), a homeobox-containing transcription factor.

View Article and Find Full Text PDF

In order to study the effects of soil amendments on greenhouse gas emissions, five different fertilization treatments (no fertilization, conventional fertilization, conventional fertilization+bentonite, conventional fertilization+biochar, and conventional fertilization+potassium polyacrylate, labeled as NF, CK, B, C, and PAM) were applied on corn fields in the Hetao irrigation district during the maize growing seasons of 2015 and 2016, and the samples were analyzed by static chamber-gas chromatography. The results showed that NO had a bimodal emission pattern in the Hetao Irrigation Area, and the NO emission peak appeared five to seven days after topdressing and irrigating (d.p.

View Article and Find Full Text PDF

A high proliferation rate has been observed to facilitate somatic cell reprogramming, but the pathways that connect proliferation and reprogramming have not been reported. DNA methyltransferase 1 (DNMT1) methylates hemimethylated CpG sites produced during S phase and maintains stable inheritance of DNA methylation. Impairing this process results in passive DNA demethylation.

View Article and Find Full Text PDF

Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial-mesenchymal transition (EMT) to late mesenchymal-epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of and , and the subsequent activation of neuron projection.

View Article and Find Full Text PDF

Background: Pain management has been considered as significant contributor to broad quality-of-life improvement for cancer patients. Modulating serum cholesterol levels affects analgesia abilities of opioids, important pain killer for cancer patients, in mice system. Thus the correlation between opioids usages and cholesterol levels were investigated in human patients with lung cancer.

View Article and Find Full Text PDF

Background: Currently, direct conversion from somatic cells to neurons requires virus-mediated delivery of at least one transcriptional factor or a combination of several small-molecule compounds. Delivery of transcriptional factors may affect genome stability, while small-molecule compounds may require more evaluations when applied in vivo. Thus, a defined medium with only conventional growth factors or additives for cell culture is desirable for inducing neuronal trans-differentiation.

View Article and Find Full Text PDF

High-throughput mRNA sequencing (RNA-Seq) is widely used for transcript quantification of gene isoforms. Since RNA-Seq data alone is often not sufficient to accurately identify the read origins from the isoforms for quantification, we propose to explore protein domain-domain interactions as prior knowledge for integrative analysis with RNA-Seq data. We introduce a Network-based method for RNA-Seq-based Transcript Quantification (Net-RSTQ) to integrate protein domain-domain interaction network with short read alignments for transcript abundance estimation.

View Article and Find Full Text PDF