Publications by authors named "Lillycrop K"

Article Synopsis
  • Mitochondrial calcium uniporter (MCU) plays a crucial role in calcium uptake and energy metabolism, especially during muscle contractions, but its therapeutic potential in aging-related muscle decline is not well understood.
  • Research reveals that the regulator MCUR1 is downregulated in aging muscles, leading to reduced mitochondrial calcium uptake and impaired energy production, contributing to sarcopenia (muscle loss).
  • The natural compound oleuropein has been identified as an activator of MCU, which enhances mitochondrial function and endurance in both young and older mice, indicating its potential as a food-derived treatment for age-related muscle dysfunction.
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction and low NAD levels are linked to aging and muscle loss (sarcopenia), but it's unclear if these issues come from local or systemic factors.
  • Research shows that trigonelline, a natural compound similar to nicotinic acid, positively affects NAD levels and muscle health across different species, including humans.
  • Trigonelline enhances mitochondrial function, reduces muscle wasting, and increases strength and lifespan, suggesting that dietary trigonelline could be a helpful strategy against age-related muscle decline.
View Article and Find Full Text PDF

Small noncoding RNAs (sncRNAs) are implicated in age-associated pathologies, including sarcopenia and insulin resistance (IR). As potential circulating biomarkers, most studies have focussed on microRNAs (miRNAs), one class of sncRNA. This study characterized the wider circulating sncRNA transcriptome of older individuals and associations with sarcopenia and IR.

View Article and Find Full Text PDF

Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth.

View Article and Find Full Text PDF

Background: While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older individuals. As epigenetic processes are suggested to contribute to the development of ageing-associated diseases, we investigated whether differential DNA methylation was associated with IR in human primary muscle stem cells (myoblasts) from community-dwelling older individuals.

Methods: We measured DNA methylation (Infinium HumanMethylationEPIC BeadChip) in myoblast cultures from vastus lateralis biopsies (119 males/females, mean age 78.

View Article and Find Full Text PDF
Article Synopsis
  • Human height is primarily determined by genetics, but this study explores how modifiable epigenetic factors, specifically blood DNA methylation, influence child height in low and middle-income countries (LMIC).
  • The research identifies a significant link between DNA methylation in the SOCS3 gene and child height, with findings replicating in a high-income country cohort, showing that this effect is independent of genetic factors.
  • Analysis reveals that SOCS3 methylation explains up to 9.5% of height variance in mid-childhood and is influenced by prenatal maternal folate and socio-economic status, highlighting the potential role of epigenetic modifications in child growth in LMIC.
View Article and Find Full Text PDF

Immune function changes across the life stages; for example, senior adults exhibit a tendency towards a weaker cell-mediated immune response and a stronger inflammatory response than younger adults. This might be partly mediated by changes in oxylipin synthesis across the life course. Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that modulate immune function and inflammation.

View Article and Find Full Text PDF

Background: Amongst healthy older people, a number of correlates of impaired skeletal muscle mass and function have been defined. Although the prevalence of obesity is increasing markedly in this age group, information is sparse about the particular impacts of obesity on ageing skeletal muscle or the molecular mechanisms that underlie this and associated disease risk.

Methods: Here, we examined genome-wide transcriptional changes using RNA sequencing in muscle biopsies from 40 older community-dwelling men from the Hertfordshire Sarcopenia Study with regard to obesity (body mass index [BMI] >30 kg/m , n = 7), overweight (BMI 25-30, n = 19), normal weight (BMI < 25, n = 14), and per cent and total fat mass.

View Article and Find Full Text PDF

Tetracosahexaenoic acid (24:6ω-3) is an intermediate in the conversion of 18:3ω-3 to 22:6ω-3 in mammals. There is limited information about whether cells can assimilate and metabolize exogenous 24:6ω-3. This study compared the effect of incubation with 24:6ω-3 on the fatty acid composition of two related cell types, primary CD3 T lymphocytes and Jurkat T cell leukemia, which differ in the integrity of the polyunsaturated fatty acid (PUFA) biosynthesis pathway.

View Article and Find Full Text PDF

Background And Aims: Epigenetic modifications are associated with hepatic fat accumulation and non-alcoholic fatty liver disease (NAFLD). However, few epigenetic modifications directly implicated in such processes have been identified during adolescence, a critical developmental window where physiological changes could influence future disease trajectory. To investigate the association between DNA methylation and NAFLD in adolescence, we undertook discovery and validation of novel methylation marks, alongside replication of previously reported marks.

View Article and Find Full Text PDF

Introduction: Immune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course.

Methods And Results: We investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3 T lymphocytes and in CD3 T lymphocytes from adults (median 41 years) and seniors (median 70 years).

View Article and Find Full Text PDF

Background: Obesity is associated with enhanced lipid accumulation and the expansion of adipose tissue accompanied by hypoxia and inflammatory signalling. Investigation in human subcutaneous white adipose tissue (scWAT) in people living with obesity in which metabolic complications such as insulin resistance are yet to manifest is limited, and the mechanisms by which these processes are dysregulated are not well elucidated. Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have been shown to modulate the expression of genes associated with lipid accumulation and collagen deposition and reduce the number of inflammatory macrophages in adipose tissue from individuals with insulin resistance.

View Article and Find Full Text PDF

Background: Obesity is associated with enhanced inflammation. However, investigation in human subcutaneous white adipose tissue (scWAT) is limited and the mechanisms by which inflammation occurs have not been well elucidated. Marine long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and may reduce scWAT inflammation.

View Article and Find Full Text PDF

Background: The prevalence of cardiometabolic disease (CMD) is rising globally, with environmentally induced epigenetic changes suggested to play a role. Few studies have investigated epigenetic associations with CMD risk factors in children from low- and middle-income countries. We sought to identify associations between DNA methylation (DNAm) and CMD risk factors in children from India and The Gambia.

View Article and Find Full Text PDF

Background: Sarcopenia is the age-related loss of muscle mass, strength, and function. Epigenetic processes such as DNA methylation, which integrate both genetic and environmental exposures, have been suggested to contribute to the development of sarcopenia. This study aimed to determine whether differences in the muscle methylome are associated with sarcopenia and its component measures: grip strength, appendicular lean mass index (ALMi), and gait speed.

View Article and Find Full Text PDF

Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes.

View Article and Find Full Text PDF

Eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) are important for leukocyte function. This study investigated whether consuming transgenic (tO) seed oil containing both 20:5n-3 and 22:6n-3 is as effective as fish oil (FO) for increasing the 20:5n-3 and 22:6n-3 content of leukocytes and altering mitogen-induced changes to the T cell transcriptome. Healthy adults ( = 31) consumed 450 mg/day of 20:5n-3 plus 22:6n-3 from either FO or tO for 8 weeks.

View Article and Find Full Text PDF

DNA methylation (DNAm) in mammals is mostly examined within the context of CpG dinucleotides. Non-CpG DNAm is also widespread across the human genome, but the functional relevance, tissue-specific disposition, and inter-individual variability has not been widely studied. Our aim was to examine non-CpG DNAm in the wider methylome across multiple tissues from the same individuals to better understand non-CpG DNAm distribution within different tissues and individuals and in relation to known genomic regulatory features.

View Article and Find Full Text PDF

The epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ˜46 kb (<0.002% genome), is the second most abundant cellular transcript.

View Article and Find Full Text PDF

Recent studies implicate maternal gestational diabetes mellitus (GDM) in differential methylation of infant DNA. Folate and vitamin B12 play a role in DNA methylation, and these vitamins may also influence GDM risk. The aims of this study were to determine folate and vitamin B12 status in obese pregnant women and investigate associations between folate and vitamin B12 status, maternal dysglycaemia and neonatal DNA methylation at cytosine-phosphate-guanine sites previously observed to be associated with dysglycaemia.

View Article and Find Full Text PDF

Many epidemiological studies have linked low birthweight to an increased risk of non-communicable diseases (NCDs) in later life, with epigenetic proceseses suggested as an underlying mechanism. Here, we sought to identify neonatal methylation changes associated with birthweight, at the individual CpG and genomic regional level, and whether the birthweight-associated methylation signatures were associated with specific maternal factors. Using the Illumina Human Methylation EPIC array, we assessed DNA methylation in the cord blood of 557 and 483 infants from the UK Pregnancies Better Eating and Activity Trial and Southampton Women's Survey, respectively.

View Article and Find Full Text PDF

The -3 polyunsaturated fatty acids (PUFA) present primarily in oily fish, namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important components of cell membranes and that are needed for normal development and cell function. Humans have very limited capacity for EPA and DHA synthesis from α-linolenic acid and so they must be obtained pre-formed from the diet. However, perceived unpalatability of oily fish and fish oil concerns about contamination with environmental pollutants, dietary choices that exclude fish and animal products, and price limit the effectiveness of recommendations for EPA and DHA intakes.

View Article and Find Full Text PDF

Folate, a cofactor for the supply of one-carbon groups, is required by epigenetic processes to regulate cell lineage determination during development. The intake of folic acid (FA), the synthetic form of folate, has increased significantly over the past decade, but the effects of high periconceptional FA intake on cell lineage determination in the early embryo remains unknown. Here, we investigated the effect of maternal high FA (HFA) intake on blastocyst development and expression of key regulatory genes.

View Article and Find Full Text PDF

Epigenetics links perinatal influences with later obesity. We identifed differentially methylated CpG (dmCpG) loci measured at 17 years associated with concurrent adiposity measures and examined whether these were associated with hsCRP, adipokines, and early life environmental factors. Genome-wide DNA methylation from 1192 Raine Study participants at 17 years, identified 29 dmCpGs (Bonferroni corrected p < 1.

View Article and Find Full Text PDF