Mice used in biomedical research are typically housed at ambient temperatures (22°C-24°C) below thermoneutrality (26°C-31°C). This chronic cold stress triggers a hypermetabolic response that may limit the utility of mice in modeling hypermetabolism in response to burns. To evaluate the effect of housing temperature on burn-induced hypermetabolism, mice were randomly assigned to receive sham, small, or large scald burns.
View Article and Find Full Text PDFBackground: Sub-thermoneutral housing increases facultative thermogenesis in mice, which may mask the pre-clinical efficacy of anti-obesity strategies that target energy expenditure (EE). Here, we quantified the impact of protonophore treatment on whole-body energetics in mice housed at 30°C.
Methods: C57BL/6J mice ( = 48, 24M/24F) were housed at 24°C for 2 weeks; 32 (16M/16F) were then transitioned to 30°C for a further 4 weeks.
High cardiorespiratory fitness (CRF) is associated with a reduced risk of metabolic disease and is linked to superior mitochondrial respiratory function. This study investigated how intrinsic CRF affects bioenergetics and metabolic health in adulthood and early life. Adult rats selectively bred for low and high running capacity [low capacity runners (LCR) and high capacity runners (HCR), respectively] underwent metabolic phenotyping before mating.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2022
Typical vivarium temperatures (20-26°C) induce facultative thermogenesis in mice, a process attributable in part to uncoupling protein-1 (UCP1). The impact of modest changes in housing temperature on whole body and adipose tissue energetics in mice remains unclear. Here, we determined the effects of transitioning mice from 24°C to 30°C on total energy expenditure and adipose tissue protein signatures.
View Article and Find Full Text PDF