Chloroaluminate ionic liquids selectively transform (waste) polyolefins into gasoline-range alkanes through tandem cracking-alkylation at temperatures below 100 °C. Further improvement of this process necessitates a deep understanding of the nature of the catalytically active species and the correlated performance in the catalyzing critical reactions for the tandem polyolefin deconstruction with isoalkanes at low temperatures. Here, we address this requirement by determining the nuclearity of the chloroaluminate ions and their interactions with reaction intermediates, combining in situ Al magic-angle spinning nuclear magnetic resonance spectroscopy, in situ Raman spectroscopy, Al K-edge X-ray absorption near edge structure spectroscopy, and catalytic activity measurement.
View Article and Find Full Text PDFSelective upcycling of polyolefin waste has been hampered by the relatively high temperatures that are required to cleave the carbon-carbon (C-C) bonds at reasonably high rates. We present a distinctive approach that uses a highly ionic reaction environment to increase the polymer reactivity and lower the energy of ionic transition states. Combining endothermic cleavage of the polymer C-C bonds with exothermic alkylation reactions of the cracking products enables full conversion of polyethylene and polypropylene to liquid isoalkanes (C to C) at temperatures below 100°C.
View Article and Find Full Text PDFMetal-support interactions have been widely utilized for optimizing the catalytic reactivity of oxide-supported Au nanoparticles. Optimized reactivity was mainly detected with small (1-5 nm) oxide-supported Au nanoparticles and correlated to highly reactive sites at the oxide-metal interface. However, catalytically active sites are not necessarily restricted to the interface but reside as well on the Au surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2022
The wide use of copper is limited by its rapid oxidation. Main oxidation mitigation approaches involve alloying or surface passivation technologies. However, surface alloying often modifies the physical properties of copper, while surface passivation is characterized by limited thermal and chemical stability.
View Article and Find Full Text PDFN-Heterocyclic carbenes (NHCs) were functionalized with a triisopropylsilyl (TIPS)-protected alkyne group and self-assembled on Au films to enable post-deposition functionalization by C-C coupling reactions. The TIPS group efficiently protected the alkyne and prevented its deprotonation during surface-anchoring of NHC. Sonogashira C-C coupling reactions were performed on the Au film in high yield following removal of the TIPS group, demonstrating that post-deposition coupling reactions can be employed to widen the chemical scope of surface-anchored NHCs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2019
We present an atom-economic strategy to catalytically generate and intercept nitrile anion equivalents using hydrogen transfer catalysis. Addition of α,β-unsaturated nitriles to a pincer-based Ru-H complex affords structurally characterized κ-N-coordinated keteniminates by selective 1,4-hydride transfer. When generated in situ under catalytic hydrogenation conditions, electrophilic addition to the keteniminate was achieved using anhydrides to provide α-cyanoacetates in high yields.
View Article and Find Full Text PDFMonodentate phosphine ligands are frequently employed in the Ni-catalyzed C-O functionalization of aryl esters. However, the extensive body of preparative work on such reactions contrasts with the lack of information concerning the structure and reactivity of the relevant nickel intermediates. In fact, experimental evidence for a seemingly trivial oxidative addition into the C-O bond of aryl esters with monodentate phosphines and low-valent nickel complexes still remains elusive.
View Article and Find Full Text PDFWe present the direct and stereoretentive deuteration of primary amines using Ru-bMepi (bMepi = 1,3-(6'-methyl-2'-pyridylimino)isoindolate) complexes and DO. High deuterium incorporation occurs at the α-carbon (70-99%). For α-chiral amines, complete retention of stereochemistry is achieved when using an electron-deficient Ru catalyst.
View Article and Find Full Text PDFThe iridium-catalyzed arene C-H borylation reaction of benzylic amines has been developed, which inverts the typical steric-controlled product distribution to provide ortho-substituted boronate esters. Picolylamine was found to be an ideal ligand to replace 4,4'-di-tert-butylbipyridine to induce the directing effect. Preliminary experiments are consistent with a mechanism involving dissociation of one amine of the hemilabile diamine ligand.
View Article and Find Full Text PDFAntarctic krill embryos and larvae were experimentally exposed to 380 (control), 1000 and 2000 µatm pCO₂ in order to assess the possible impact of ocean acidification on early development of krill. No significant effects were detected on embryonic development or larval behaviour at 1000 µatm pCO₂; however, at 2000 µatm pCO₂ development was disrupted before gastrulation in 90 per cent of embryos, and no larvae hatched successfully. Our model projections demonstrated that Southern Ocean sea water pCO₂ could rise up to 1400 µatm in krill's depth range under the IPCC IS92a scenario by the year 2100 (atmospheric pCO₂ 788 µatm).
View Article and Find Full Text PDF