Publications by authors named "Lilli T E Bay"

RNA polymerase II (RNAPII) transcribes DNA into mRNA and thereby plays a critical role in cellular protein production. In addition, RNAPII plays a central role in DNA damage responses. Measurements of RNAPII on chromatin may thus give insight into several essential processes in eukaryotic cells.

View Article and Find Full Text PDF

RNA polymerase II (RNAPII) is emerging as an important factor in DNA damage responses, but how it responds to genotoxic stress is not fully understood. We have developed a rapid and sensitive flow cytometry method to study chromatin binding of RNAPII in individual human cells through the cell cycle. Indicating enhanced transcription initiation at early timepoints, levels of RNAPII were increased at 15-30min after UV-induced DNA damage.

View Article and Find Full Text PDF

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor.

View Article and Find Full Text PDF

Conflicts between transcription and replication are a major source of replication stress. Our recent findings show that proper dephosphorylation of Serine 5 in the carboxy-terminal domain (CTD) of DNA-directed RNA polymerase II subunit RPB1 is needed to prevent such conflicts in human cells.

View Article and Find Full Text PDF

Purpose: Radiation-induced activation of cell cycle checkpoints have been of long-standing interest. The WEE1, CHK1 and ATR kinases are key factors in cell cycle checkpoint regulation and are essential for the S and G2 checkpoints. Here, we review the rationale for why inhibitors of WEE1, CHK1 and ATR could be beneficial in combination with radiation.

View Article and Find Full Text PDF

Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress.

View Article and Find Full Text PDF