Publications by authors named "Liling Shi"

Background: Ultrasound image examination has become the preferred choice for diagnosing metabolic dysfunction-associated steatotic liver disease (MASLD) due to its non-invasive nature. Computer-aided diagnosis (CAD) technology can assist doctors in avoiding deviations in the detection and classification of MASLD.

Method: We propose a hybrid model that integrates the pre-trained VGG16 network with an attention mechanism and a stacking ensemble learning model, which is capable of multi-scale feature aggregation based on the self-attention mechanism and multi-classification model fusion (Logistic regression, random forest, support vector machine) based on stacking ensemble learning.

View Article and Find Full Text PDF