Bacterivorous nematodes are important grazers in the soil micro-food web. Their trophic regulation shapes the composition and ecosystem services of the soil microbiome, but the underlying population dynamics of bacteria and archaea are poorly understood. We followed soil respiration and 221 dominant bacterial and archaeal 16S rRNA gene amplicon sequencing variants (ASVs) in response to top-down control by a common bacterivorous soil nematode, Acrobeloides buetschlii, bottom-up control by maize litter amendment and their combination over 32 days.
View Article and Find Full Text PDFBiofilms in cooling towers represent a common habitat for the human pathogen Legionella pneumophila. Within the biofilm consortium, frequent interactions with protozoa, i.e.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
December 2024
It is becoming increasingly clear that not only unicellular, photoautotrophic eukaryotes, plants, and fungi, but also invertebrates are capable of synthesizing ω3 long-chain polyunsaturated fatty acids (LC-PUFA) de novo. However, the distribution of this anabolic capacity among different invertebrate groups and its implementation at the gene and protein level are often still unknown. This study investigated the PUFA pathways in common soil fauna, i.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2024
Free-living nematodes harbor and disseminate various soil-borne bacterial pathogens. Whether they function as vectors or environmental reservoirs for the aquatic , the causative agent of Legionnaires' disease, is unknown. A survey screening of biofilms of natural (swimming lakes) and technical (cooling towers) water habitats in Germany revealed that nematodes can act as potential reservoirs, vectors or grazers of in cooling towers.
View Article and Find Full Text PDF17,18-Epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant eicosanoid generated by cytochrome P450 (CYP) enzymes in C. elegans, is a potential signaling molecule in the regulation of pharyngeal pumping activity of this nematode. As a chiral molecule, 17,18-EEQ can exist in two stereoisomers, the 17(R),18(S)- and 17(S),18(R)-EEQ enantiomers.
View Article and Find Full Text PDFEndogenous rhythmic growth (ERG) is displayed by many tropical and some major temperate tree species and characterized by alternating root and shoot flushes (RF and SF). These flushes occur parallel to changes in biomass partitioning and in allocation of recently assimilated carbon and nitrogen. To address how biotic interactions interplay with ERG, we cross-compared the RF/SF shifts in oak microcuttings in the presence of pathogens, consumers and a mycorrhiza helper bacterium, without and with an ectomycorrhizal fungus (EMF), and present a synthesis of the observations.
View Article and Find Full Text PDFQuantitative fatty acid signature analysis (QFASA) as a biochemical tool to study the diet composition of predators is frequently used in marine ecology to infer trophic links in vertebrate consumers. However, the potential and challenges of this method in other ecosystems have only recently been studied. The application in soil ecosystems leads to hurdles not encountered in the marine, such as the low similarity of fatty acid signatures between resource and consumer.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2020
To understand consumer dietary requirements and resource use across ecosystems, researchers have employed a variety of methods, including bulk stable isotope and fatty acid composition analyses. Compound-specific stable isotope analysis (CSIA) of fatty acids combines both of these tools into an even more powerful method with the capacity to broaden our understanding of food web ecology and nutritional dynamics. Here, we provide an overview of the potential that CSIA studies hold and their constraints.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2020
Quantitative fatty acid signature analysis (QFASA) is widely used to investigate trophic interactions in marine ecosystems, as nutritionally important 3 long-chain polyunsaturated fatty acids at the food web base allow tracing of their trophic transfer in the food chain. By contrast, the basal resources in soil food webs comprise a wider array of trophic markers, including branched-chain, cyclopropane as well as several mono- and polyunsaturated fatty acids. These diverse markers allow distinguishing between the three dominant soil carbon and energy channels, the root, bacterial and fungal pathway.
View Article and Find Full Text PDFEcological communities in forests have been shown to be strongly affected by forest management but a detailed understanding of how different components of management affect insect communities directly and indirectly via environmental variables, how management influences functional trait diversity and composition, and whether these results can be transferred to other functional groups besides insects (e.g. bacteria or nematodes) is still missing.
View Article and Find Full Text PDFSoil food webs are important drivers for key ecological functions in terrestrial systems such as carbon and nutrient cycling. However, soil food web models generally lack quantitative data, mainly due to the shortage in high-throughput methods to describe energy flows. In marine environments, multivariate optimization models (Quantitative Fatty Acid Signature Analysis) and Bayesian approaches (source-tracking algorithm) were established to predict the proportion of predator diets using lipids as tracers.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2019
For vertebrates, the adequate supply of polyunsaturated fatty acids (PUFA) by the diet, in particular ω3 long-chain PUFA, is considered essential for neural development, growth and reproduction. In contrast to aquatic ecosystems, ω3 long-chain PUFA apparently are not widely available in the terrestrial food chain. Their de novo synthesis requires the presence of Δ12 and ω3 fatty acid desaturase enzymes, which are absent in vertebrates but present, for example, in the nematode Caenorhabditis elegans (FAT-2 and FAT-1).
View Article and Find Full Text PDFThe herbicide Roundup (and glyphosate, its active ingredient) is extensively used for weed control on a worldwide scale. It is absorbed after foliar application and quickly translocated inside the plant. In this study, we investigated the effects of Roundup speed, a commercial glyphosate formulation, on the structural composition (dominance of microbial groups, phospholipid fatty acid analysis - PLFA) and functional diversity (use of carbon sources, Multiple Substrate Induced Respiration - MSIR) of soil microorganisms.
View Article and Find Full Text PDFWhile forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa.
View Article and Find Full Text PDFTo keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess potential threats to food safety. Toxicity tests with the bacterial-feeding nematode as the model organism are well established. In this study the wildtype strain N2 (var.
View Article and Find Full Text PDFFatty acids (FAs) are useful biomarkers in food web ecology because they are typically assimilated as a complete molecule and transferred into consumer tissue with minor or no modification, allowing the dietary routing between different trophic levels. However, the FA trophic marker approach is still hampered by the limited knowledge in lipid metabolism of the soil fauna. This study used entirely labelled palmitic acid (C16:0, 99 atom%) as a tracer in fatty acid metabolism pathways of two widespread soil Collembola, Protaphorura fimata and Heteromurus nitidus.
View Article and Find Full Text PDFThe ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way.
View Article and Find Full Text PDFSoil food web structure and function is primarily determined by the major basal resources, which are living plant tissue, root exudates and dead organic matter. A field experiment was performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An arable site was cropped either with maize, amended with maize shoot litter or remained bare soil, representing food webs depending on roots, aboveground litter and soil organic matter as predominant resource, respectively.
View Article and Find Full Text PDFBackground: Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions.
View Article and Find Full Text PDFSoil fungi play an essential role in the decomposition of plant-derived organic material entering soils. The quality and quantity of organic compounds vary seasonally as well as with soil depth. To elucidate how these resources affect fungal communities in an arable soil, a field experiment was set up with two plant species, maize and wheat.
View Article and Find Full Text PDFHerbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules.
View Article and Find Full Text PDFSoil animals live in complex and heterogeneous habitats including litter of various types but also microhabitats such as mosses, fungal mats and grass patches. Soil food webs have been separated into a slow fungal and a fast bacterial energy channel. Bacterial-feeding nematodes are an important component of the bacterial energy channel by consuming bacteria and forming prey for higher trophic levels such as soil microarthropods.
View Article and Find Full Text PDFOaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses.
View Article and Find Full Text PDFPlant residues provide a major source of nitrogen (N) for plant growth. Litter N mineralization varies with litter carbon-to-nitrogen (C-to-N) ratio and presence of bacterial-feeding fauna. We assessed the effect of amoebae, major bacterial feeders in soil, on mineralization of litter of low (high quality) and high C-to-N ratio (low quality) and evaluated consequences for plant growth.
View Article and Find Full Text PDF