Growing evidence demonstrates a continuous interaction between the immune system, the nerve and the muscle in neuromuscular disorders of different pathogenetic origins, such as Duchenne Muscular Dystrophy (DMD) and Amyotrophic Lateral Sclerosis (ALS), the focus of this review. Herein we highlight the complexity of the cellular and molecular interactions involving the immune system in neuromuscular disorders, as exemplified by DMD and ALS. We describe the distinct types of cell-mediated interactions, such as cytokine/chemokine production as well as cell-matrix and cell-cell interactions between T lymphocytes and other immune cells, which target cells of the muscular or nervous tissues.
View Article and Find Full Text PDFGroup B (GBS) infection during pregnancy is involved in maternal sepsis, chorioamnionitis, prematurity, fetal infection, neonatal sepsis, and neurodevelopmental alterations. The GBS-induced chorioamnionitis leads to a plethora of immune and trophoblast cells alterations that could influence endothelial cells to respond differently to angiogenic mediators and alter placental vascular structure and function in pregnant women. In this context, preventive measures are needed to reduce such dysfunctions.
View Article and Find Full Text PDFSchwann cells were identified in the tumor surrounding area prior to initiate the invasion process underlying connective tissue. These cells promote cancer invasion through direct contact, while paracrine signaling and matrix remodeling are not sufficient to proceed. Considering the intertwined structure of signaling, regulatory, and metabolic processes within a cell, we employed a genome-scale biomolecular network.
View Article and Find Full Text PDFVersican is a proteoglycan known to interact with cells to influence their ability to proliferate, differentiate, migrate, invade and assemble extracellular matrix, with all of these cell functions present during placentation. In the placenta, cytotrophoblast cells have the ability to differentiate into the syncytiotrophoblast, a mechanism that is greatly increased in gestational trophoblastic diseases (GTD). Nevertheless, the molecular signaling underlying the increased syncytiotrophoblast differentiation are still being unveiled and may result in novel therapeutic targets for GTD.
View Article and Find Full Text PDF