Publications by authors named "Liliane F C Ribeiro"

Article Synopsis
  • The text refers to a correction made to a previously published article, indicating there were errors or updates that needed to be addressed.
  • The DOI provided (10.1016/j.btre.2021.e00652) is a unique identifier for the original article, which allows readers to find the specific work.
  • Such corrections are important for maintaining scientific accuracy and integrity in published research.
View Article and Find Full Text PDF

is one of the major producers of holocellulases. It is known that in , protein production patterns can change in a carbon source-dependent manner. Here, we performed a phosphorylome analysis of grown in the presence of sugarcane bagasse and glucose as carbon source.

View Article and Find Full Text PDF

The filamentous fungus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host.

View Article and Find Full Text PDF

Hospital-associated infections (HAIs) are a leading cause of morbidity and mortality in intensive care units (ICUs) and neonatal intensive care units (NICUs). Organisms causing these infections are often present on surfaces around the patient. Given that microbiota may vary across different ICUs, the HAI-related microbial signatures within these units remain underexplored.

View Article and Find Full Text PDF

Background: is the most important industrial producer of lignocellulolytic enzymes. These enzymes play an important role in biomass degradation leading to novel applications of this fungus in the biotechnology industry, specifically biofuel production. The secretory pathway of fungi is responsible for transporting proteins addressed to different cellular locations involving some cellular endomembrane systems.

View Article and Find Full Text PDF

In filamentous fungi, an important kinase responsible for adaptation to changes in available nutrients is cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]). This kinase has been well characterized at a molecular level, but its systemic action and direct/indirect targets are generally not well understood in filamentous fungi. In this work, we used a deletion strain (Δ) to identify proteins for which phosphorylation is dependent (either directly or indirectly) on PKA.

View Article and Find Full Text PDF

Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products.

View Article and Find Full Text PDF

All biosensing platforms rest on two pillars: specific biochemical recognition of a particular analyte and transduction of that recognition into a readily detectable signal. Most existing biosensing technologies utilize proteins that passively bind to their analytes and therefore require wasteful washing steps, specialized reagents, and expensive instruments for detection. To overcome these limitations, protein engineering strategies have been applied to develop new classes of protein-based sensor/actuators, known as protein switches, responding to small molecules.

View Article and Find Full Text PDF

The protein kinase MpkA plays a prominent role in the cell wall integrity signaling (CWIS) pathway, acting as the terminal MAPK activating expression of genes which encode cell wall biosynthetic enzymes and other repair functions. Numerous studies focus on MpkA function during cell wall perturbation. Here, we focus on the role MpkA plays outside of cell wall stress, during steady state growth.

View Article and Find Full Text PDF

The filamentous fungi is one of the most well-studied cellulolytic microorganisms. It is the most important fungus for the industrial production of enzymes to biomass deconstruction being widely used in the biotechnology industry, mainly in the production of biofuels. Here, we performed an analytic review of the holocellulolytic system presented by as well as the transcriptional and signaling mechanisms involved with holocellulase expression in this fungus.

View Article and Find Full Text PDF

The development of precise and modulated methods for customized manipulation of DNA is an important objective for the study and engineering of biological processes and is essential for the optimization of gene therapy, metabolic flux, and synthetic gene networks. The clustered regularly interspaced short palindromic repeat- (CRISPR-) associated protein 9 is an RNA-guided site-specific DNA-binding complex that can be reprogrammed to specifically interact with a desired DNA sequence target. CRISPR-Cas9 has been used in a wide variety of applications ranging from basic science to the clinic, such as gene therapy, gene regulation, modifying epigenomes, and imaging chromosomes.

View Article and Find Full Text PDF

Filamentous fungi are widely used in the production of a variety of industrially relevant enzymes and proteins as they have the unique ability to secrete tremendous amounts of proteins. However, the secretory pathways in filamentous fungi are not completely understood. Here, we investigated the role of a mutation in the POlarity Defective (podB) gene on growth, protein secretion, and cell wall organization in Aspergillus nidulans using a temperature sensitive (Ts) mutant.

View Article and Find Full Text PDF

Protein phosphorylation is a major means of regulation for cellular processes, and is important in cell signaling, growth, and cell proliferation. To study phosphorylated proteins, high throughput phosphoproteomic technologies, such as reverse phase protein array, phospho-specific flow cytometry, and mass spectrometry (MS) based technologies, have been developed. Among them, mass spectrometry has become the primary tool employed for the identification of phosphoproteins and phosphosites in fungi, leading to an improved understanding of a number of signaling pathways.

View Article and Find Full Text PDF

Filamentous fungi are attractive hosts for heterologous protein expression due to their capacity to secrete large amounts of enzymes into the extracellular medium. Xyloglucanases, which specifically hydrolyze xyloglucan, have been recently applied in lignocellulosic biomass degradation and conversion in many other industrial processes. In this context, this work aimed to clone, express, and determine the functional properties of a recombinant xyloglucanase (AtXEG12) from Aspergillus terreus, and also its solid-state (SSF) and submerged (SmF) fermentation in bioreactors.

View Article and Find Full Text PDF

Background: Product inhibition can reduce catalytic performance of enzymes used for biofuel production. Different mechanisms can cause this inhibition and, in most cases, the use of classical enzymology approach is not sufficient to overcome this problem. Here we have used a semi-rational protein fusion strategy to create a product-stimulated enzyme.

View Article and Find Full Text PDF

Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-β-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus.

View Article and Find Full Text PDF

Xylanolytic enzymes produced by Lentinula edodes UFV70, cultivated in eucalyptus sawdust/rice bran medium, were stable at 50, 60 and 65°C for 21 hours, losing only 15-25% activity. Fungus incubation at 50°C for 12 hours and at 65°C for 24 hours increased the amount of xylose produced.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: