Exp Cell Res
July 2024
Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31 cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid.
View Article and Find Full Text PDFTo investigate the putative stem cell/tumor stem cell (SC/TSC) niche contribution to hyperplasic/adenomatous pituitary lesions, we analyzed variation in the pituitary stem cell population during the development of experimental pituitary tumors. Pituitary tumors were induced in female F344 rats with estradiol benzoate for 5, 10, 20 and 30 days. Cells positive for GFRa2, Sox2, Sox9, Nestin, CD133 and CD44 were identified in the marginal zone and in the adenoparenchyma in both control and 30D groups, with predominant adenoparenchyma localization of GRFa2 and SOX9 found in tumoral pituitaries.
View Article and Find Full Text PDFAndrogens play a central role in homeostatic and pathological processes of the prostate gland. At the cellular level, testosterone activates both the genomic signaling pathway, through the intracellular androgen receptor (AR), and membrane-initiated androgen signaling (MIAS), by plasma membrane receptors. We have previously shown that the activation of MIAS induces uncontrolled proliferation and fails to stimulate the beneficial immunomodulatory effects of testosterone in prostatic cells, becoming necessary to investigate if genomic signaling mediates homeostatic effects of testosterone.
View Article and Find Full Text PDFBackground: PTP4A3 is a subclass of a protein tyrosine phosphatase super family and is expressed in a range of epithelial neoplasms. We evaluated PTP4A3 expression and its association with clinicopathological parameters in different types of functioning pituitary adenomas.
Methods: A total of 34 functioning pituitary adenomas samples were evaluated in this observational study.
Humans are exposed to numerous endocrine disruptors on a daily basis, which may interfere with endogenous estrogens, with Di-(2-ethylhexyl) phthalate (DEHP) being one of the most employed. The anterior pituitary gland is a target of 17β-estradiol (E2) through the specific estrogen receptors (ERs) α and β, whose expression levels fluctuate in the gland under different contexts, and the ERα/β index is responsible for the final E2 effect. The aim of the present study was to evaluate in vivo and in vitro the DEHP effects on ERα and β expression in the pituitary cell population, and also its impact on lactotroph and somatotroph cell growth.
View Article and Find Full Text PDFThe molecular mechanisms underlying the capability of pituitary tumours to avoid unregulated cell proliferation are still not well understood. However, the NF-κB transcription factor, which is able to modulate not only cellular senescence but also tumour progression, has emerged as a targeted candidate. This work was focused on the NF-κB role in cellular senescence during the progression of experimental pituitary tumours.
View Article and Find Full Text PDFIn pituitary adenomas, early recurrences and resistance to conventional pharmacotherapies are common, but the mechanisms involved are still not understood. The high expression of epidermal growth factor receptor 2 (HER2)/extracellular signal-regulated kinase (ERK1/2) signal observed in human pituitary adenomas, together with the low levels of the antimitogenic transforming growth factor beta receptor 2 (TBR2), encouraged us to evaluate the effect of the specific HER2 inhibition with trastuzumab on experimental pituitary tumor cell growth and its effect on the antiproliferative response to TGFB1. Trastuzumab decreased the pituitary tumor growth as well as the expression of ERK1/2 and the cell cycle regulators CCND1 and CDK4.
View Article and Find Full Text PDFExtensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear.
View Article and Find Full Text PDFTrifluoroacetic acid (TFA) may be the cause of the bottleneck in high resolution structure determination for protein-peptide complexes. Fragment based drug design often involves the use of synthetic peptides which contain TFA (excipient). Our goal was to explore the effects of this excipient on a model complex: centrin-melittin-TFA.
View Article and Find Full Text PDFAlthough pituitary adenomas represent 25% of intracranial tumors, they are usually benign, with the mechanisms by which these tumors usually avoid an invasive profile and metastatic growth development still remaining unclear. In this context, cellular senescence might constitute a plausible explanation for the benign nature of pituitary adenomas. In this study, we investigated the emergence of cellular senescence as a growth control mechanism during the progression of estrogen-induced pituitary tumors.
View Article and Find Full Text PDFPituitary tumor cells have a poor response to the growth inhibitory effect of TGFβ1, possibly resulting from the cross talk of TGFβ/Smads signal with other signaling pathways, an undescribed mechanism in these tumoral cells. To address this hypothesis, we investigated whether the mitogen-activated extracellular signal-regulated kinase (MEK)/ERK1/2 and phosphoinositide-3 kinase/protein kinase B (PI3K/Akt) pathways were able to regulate the antimitogenic effect of TGFβ1 on GH3B6 cells. TGFβ1 treatment decreased the cell proliferation and induced an activation of mothers against decapentaplegic homolog 2/3 (Smad2/3), effects that were potentiated by MEK and PI3K inhibitors, thus indicating the existence of a cross talk between TGFβ1/Smad with the MEK/ERK1/2 or PI3K/Akt pathways.
View Article and Find Full Text PDFToll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated.
View Article and Find Full Text PDFCentrin is a calcium binding protein (CaBP) belonging to the EF-hand superfamily. As with other proteins within this family, centrin is a calcium sensor with multiple biological target proteins. We chose to study Chlamydomonas reinhardtii centrin (Crcen) and its interaction with melittin (MLT) as a model for CaBP complexes due to its amphipathic properties.
View Article and Find Full Text PDFBackground: In this report, we explored the role of PKCalpha and PKCe as mediators of phorbol 12-myristate13-acetate (PMA)-induced proliferation in pituitary tumor GH3B6 cells, and determined if the ERK1/2 and Akt pathways were activated.
Methods: The GH3B6 cell proliferation was estimated by BrdU incorporation and the cell cycle progression by flow cytometric cell cycle analysis. We determined the expression of PKCalpha and PKCe in membrane and cytosolic fractions by western blotting.
Bromocriptine (Bc) produces pituitary tumoral mass regression which induces the cellular death that was classically described as apoptosis. However, recent works have related that other mechanisms of cell death could also be involved in the maintenance of physiological and pathological pituitary homeostasis. The aim of this study was to evaluate and characterize the different types of cell death in the involution induced by Bc in experimental rat pituitary tumors.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2008
Chlamydomonas reinhardtii centrin is a member of the EF-hand calcium-binding superfamily. It is found in the basal body complex and is important for flagellar motility. Like other members of the EF-hand family, centrin interacts with and modulates the function of other proteins in a calcium-dependent manner.
View Article and Find Full Text PDFThe signaling mechanisms of estrogens interact with those of growth factors to control the pituitary gland functions. The contribution of the membrane bound estrogen receptor in these actions is not fully understood. In this study, we focused on the regulatory action of estradiol in interaction with insulin on the secretory and proliferative lactotroph cell activities from primary pituitary cell cultures.
View Article and Find Full Text PDF