Publications by authors named "Liliana Villegas"

Microorganisms, especially those habiting mining environments, are of great importance for the retention of toxic metals in the environment. This work aimed to isolate a copper removing-microorganism from sediments of an Acid Mine Drainage-affected environment and to study the cellular responses trigger by metal presence. Apiotrichum loubieri M12 was able to tolerate and remove Cu(II) from liquid culture media, reaching a 30-35% removal capacity when it was exposed to 40 μg mL Cu(II) after 48 h.

View Article and Find Full Text PDF

Acid mine drainage-affected environments are interesting microbial niches for the isolation of metal-resistant microorganisms. In this sense, the aim of the present work is to isolate and characterize metal-resistant microorganisms from sediments of an abandoned gold mine located in San Luis (Argentina). For these purposes, the metal removal capacity and the microelemental composition of the biomass exposed to metals were evaluated.

View Article and Find Full Text PDF

The aim of this study was to assess the impact of urban and industrial areas on an urban river through a comprehensive analysis of water and sediments. Six different sites along the San Luis River, Argentina, were characterized by measuring 12 physical-chemical parameters and nine heavy metals according to standard protocols. Metal pollution in sediment samples was evaluated with several indices.

View Article and Find Full Text PDF

Diagnosing dengue in endemic areas remains problematic because of the low specificity of the symptoms and lack of accurate diagnostic tests. This study aimed to develop and prospectively validate, under routine care, dengue diagnostic clinical algorithms. The study was carried out in two phases.

View Article and Find Full Text PDF

The actinobacterium Streptomyces sp. MC1 has previously shown the capacity to resist and remove Cr(VI) from liquid culture media. The aim of this work is to analyze the differential expression pattern of intracellular proteins when Streptomyces sp.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of metallic nanoparticles in an environmentally friendly way is a key goal in nanotechnology, utilizing plants, fungi, and bacteria for cost-effective, non-toxic production.
  • Biosynthesized silver nanoparticles (AgNPs) demonstrate better biocompatibility and antimicrobial activity compared to their chemically-synthesized counterparts.
  • This study employed techniques like TEM, IR spectroscopy, and mass spectrometry to identify proteins contributing to the formation and stability of AgNPs, revealing significant proteins that enhance their antimicrobial properties.
View Article and Find Full Text PDF

Vinasse is a waste material from distillery industries, which causes major environmental problems around the world. Argentina alone produces about 4 billion liters of vinasse annually; consequently, diverse biological eco-friendly treatments are evaluated for their ability to reduce the detrimental effects. The present study reports on the degradation of a 50% (v/v) local vinasse sample by an autochthonous fungus identified as Aspergillus sp.

View Article and Find Full Text PDF

The acid mine drainage that originates in the abandoned gold mine in San Luis, Argentina, is released into La Carolina stream. The aim of this study was to determine the influence of this mine drainage on the physicochemical parameters of the area studied and on both prokaryotic and eukaryotic community structure. In addition, specific relationships between microbial taxonomic groups and physicochemical parameters were established.

View Article and Find Full Text PDF

Paenibacillus species isolated from a variety of natural sources have shown to be important glycoside hydrolases producers. These enzymes play a key role in bio-refining applications, as they are central biocatalysts for the processing of different types of polymers from vegetal biomass. Xylanase production by three native isolates belonging to the genus Paenibacillus was approached by utilizing mineral-based medium and agricultural by-products as a convenient source to produce biocatalysts suitable for their degradation.

View Article and Find Full Text PDF

The purpose of this study was to investigate the influence of increasing sulfate concentrations on chromium removal, to evaluate the effect of the presence of Cr(VI) on sulfate removal by Streptomyces sp. MC1 and to analyze the differential protein expression profile in the presence of this metal for the identification of proteins repressed or overexpressed. In the presence of Cr(VI) but in the absence of sulfate ions, bacterial growth was negligible, showing the Cr(VI) toxicity for this bacterium.

View Article and Find Full Text PDF

The role of trace elements bound to proteins in the etiology and pathogenesis of rheumatoid arthritis (RA) remains unclear. In this sense, the identification and detection of metalloproteins has a strong and growing interest. Metalloprotein studies are currently carried out by polyacrylamide gel electrophoresis (PAGE) associated to inductively coupled plasma mass spectrometry (ICPMS), and despite that complete information can be obtained for metals such as Fe, Cu and Zn, difficulties due to poor sensitivity for other trace elements such as Sn, As, etc, are currently faced.

View Article and Find Full Text PDF

In recent years, increasing interest has been shown in the use of bioemulsifiers as washing agents that can enhance desorption of soil-bound metals. However, high production costs derived from the use of expensive substrates for formulation of the fermentation media represent the main challenge for full, large-scale implementation of bioemulsifiers. This work reports on a first study of bioemulsifier production by the actinobacterium Amycolatopsis tucumanensis DSM 45259 using different carbon and nitrogen sources.

View Article and Find Full Text PDF
Article Synopsis
  • Surface-active compounds, traditionally synthetic emulsifiers, have been replaced by natural alternatives due to toxicity and cost issues, with Streptomyces sp. MC1 showing potential in chromium reduction.
  • Recent studies highlighted optimal conditions for bioemulsifier production from Streptomyces sp. MC1, with maximum effectiveness achieved at a pH of 8 and specific phosphate and calcium levels.
  • The strain maintained significant emulsifier production even in the presence of Cr(VI), and the resulting bioemulsifier exhibited desirable properties for environmental remediation efforts.
View Article and Find Full Text PDF

The present study explored the ability of the yeast Rhodotorula mucilaginosa RCL-11 to adapt to increasing Cu(II) concentrations, measuring oxidative stress through superoxide dismutase and catalase activity in two parallel sequential batch assays. One assay was performed in Erlenmeyer flasks without aeration and a second in a fermentor in which the dissolved oxygen was maintained at 30% saturation. Both assays were carried out by increasing Cu(II) concentrations in five sequential steps: 0; 0.

View Article and Find Full Text PDF

The effect of high Cu(II) concentrations on superoxide dismutase (SOD) and catalase (CAT) activity in Candida fukuyamaensis RCL-3 and Rhodotorula mucilaginosa RCL-11, previously isolated from a copper filter at a mine plant in Argentina, was studied. Addition of 0.1, 0.

View Article and Find Full Text PDF

Twenty-one yeast-like microorganisms were isolated from tannery effluents and from a nickel-copper mine in Argentina. They were tested for their Cu(II), Ni(II), Cd(II) and Cr(VI) tolerance in qualitative assays on solid medium. Three isolates were selected for their multiple tolerance to the different heavy metals and highest tolerance to Cr(VI).

View Article and Find Full Text PDF

Eleven yeasts were isolated from wastewater sediment samples collected from a copper filter mine plant, located in the province of Tucumán, Argentina, and tested for their heavy metal tolerance. Two isolates were selected based on their multiple tolerance to different heavy metals and their copper biosorption capacity was studied. Analysis of the 26S rDNA D1/D2 domain sequences indicates that isolate RCL-3 showed similarity with Candida sp.

View Article and Find Full Text PDF