Publications by authors named "Liliana Sanmarco"

Article Synopsis
  • Gut inflammation involves both immune and non-immune cells, with their interactions influenced by the gut's structure and changes during inflammation.
  • Researchers used a technique called MERFISH to analyze 1.35 million cells in a mouse model of colitis, identifying various cell types and their roles in inflammation.
  • They discovered different tissue areas associated with inflammation, characterized by specific fibroblast types, and found that similar cellular patterns exist in human ulcerative colitis, offering insights into gut remodeling during inflammation.
View Article and Find Full Text PDF

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge.

View Article and Find Full Text PDF

Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges.

View Article and Find Full Text PDF

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function.

View Article and Find Full Text PDF
Article Synopsis
  • Gut inflammation is influenced by both immune and non-immune cells, and their interactions are affected by the structure of the gut, which changes during inflammation.
  • Using a technique called MERFISH, researchers analyzed 1.35 million cells to understand how different cell types contribute to inflammation in a mouse model of colitis.
  • They discovered distinct populations of cells, particularly inflammation-related fibroblasts, that show unique characteristics and behaviors, which may have parallels in human ulcerative colitis, offering insights into gut tissue remodeling during inflammation.
View Article and Find Full Text PDF

Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology.

View Article and Find Full Text PDF

Obesity is a chronic, relapsing, and multifactorial disease characterized by excessive accumulation of adipose tissue (AT), and is associated with inflammation mainly in white adipose tissue (WAT) and an increase in pro-inflammatory M1 macrophages and other immune cells. This milieu favors the secretion of cytokines and adipokines, contributing to AT dysfunction (ATD) and metabolic dysregulation. Numerous articles link specific changes in the gut microbiota (GM) to the development of obesity and its associated disorders, highlighting the role of diet, particularly fatty acid composition, in modulating the taxonomic profile.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers focused on understanding cell-cell interactions in the central nervous system and their roles in neurological diseases, but current knowledge of specific molecular pathways is limited.
  • - They developed a new genetic screening method that utilizes CRISPR-Cas9, cell coculture, and microfluidic technology to explore how cells communicate with each other.
  • - Using their method, called SPEAC-seq, they discovered that a protein produced by microglia, known as amphiregulin, can help reduce harmful responses from astrocytes in conditions like multiple sclerosis.
View Article and Find Full Text PDF

Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes.

View Article and Find Full Text PDF

Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation.

View Article and Find Full Text PDF

Astrocytes are abundant glial cells in the central nervous system (CNS) that control multiple aspects of health and disease. Through their interactions with components of the blood-brain barrier (BBB), astrocytes not only regulate BBB function, they also sense molecules produced by peripheral immune cells, including cytokines. Here, we review the interactions between immune cells and astrocytes and their roles in health and neurological diseases, with a special focus on multiple sclerosis (MS).

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity.

View Article and Find Full Text PDF

Benznidazole (BZ) is a first-line drug for the treatment of Chagas disease; however, it presents several disadvantages that could hamper its therapeutic success. Multiparticulate drug delivery systems (MDDS) are promising carriers to improve the performance of drugs. We developed BZ-loaded MDDS intended for improving Chagas disease therapy.

View Article and Find Full Text PDF

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS).

View Article and Find Full Text PDF

Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP1 and the death receptor ligand TRAIL.

View Article and Find Full Text PDF

Galectins are animal lectins with high affinity for β-galactosides that drive the immune response through several mechanisms. In particular, the role of galectin-8 (Gal-8) in inflammation remains controversial. To analyze its role in a chronic inflammatory environment, we studied a murine model of infection.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation.

View Article and Find Full Text PDF

Chronic Chagas cardiomyopathy is the main infectious myocarditis worldwide. Almost 30% of Trypanosoma cruzi infected individuals develop slow and progressive myocarditis that leads to ventricular dilation and heart failure. Heart transplantation is an established, valuable therapeutic option for end-stage Chagas disease patients.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic inflammatory disease of the CNS. Astrocytes contribute to the pathogenesis of multiple sclerosis, but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations.

View Article and Find Full Text PDF

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons.

View Article and Find Full Text PDF

Damaged cells release the pro-inflammatory signal ATP, which is degraded by the ectonucleotidases CD39 and CD73 to the anti-inflammatory mediator adenosine (ADO). The balance between ATP/ADO is known to determine the outcome of inflammation/infection. However, modulation of the local immune response in different tissues due to changes in the balance of purinergic metabolites has yet to be investigated.

View Article and Find Full Text PDF

Chagas disease is a lifelong pathology resulting from Trypanosoma cruzi infection. It represents one of the most frequent causes of heart failure and sudden death in Latin America. Herein, we provide evidence that aerobic glycolytic pathway activation in monocytes drives nitric oxide (NO) production, triggering tyrosine nitration (TN) on CD8+ T cells and dysfunction in patients with chronic Chagas disease.

View Article and Find Full Text PDF