Publications by authors named "Liliana R Castro"

Key Points: Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons.

View Article and Find Full Text PDF

Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are unclear. We analyzed the effects of PDE10A inhibition in vivo by immunohistochemistry, and imaged cAMP, cAMP-dependent protein kinase A (PKA), and cGMP signals with biosensors in mouse brain slices.

View Article and Find Full Text PDF

Reading requires the integration of several central cognitive subsystems, ranging from attention and oculomotor control to word identification and language comprehension. Reading saccades and fixations contain information that can be correlated with word properties. When reading a sentence, the brain must decide where to direct the next saccade according to what has been read up to the actual fixation.

View Article and Find Full Text PDF

Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP-dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, pathfinding, efficacy of synaptic transmission, regulation of excitability, or long term changes. Genetically encoded optical biosensors for cAMP or PKA are considerably improving our understanding of these processes by providing a real-time measurement in living neurons.

View Article and Find Full Text PDF

The NO-cGMP signaling plays an important role in the regulation of striatal function although the mechanisms of action of cGMP specifically in medium spiny neurons (MSNs) remain unclear. Using genetically encoded fluorescent biosensors, including a novel Epac-based sensor (EPAC-S(H150)) with increased sensitivity for cAMP, we analyze the cGMP response to NO and whether it affected cAMP/PKA signaling in MSNs. The Cygnet2 sensor for cGMP reported large responses to NO donors in both striatonigral and striatopallidal MSNs, this cGMP signal was controlled partially by PDE2.

View Article and Find Full Text PDF

  The cAMP/protein kinase A (PKA) signalling cascade is ubiquitous, and each step in this cascade involves enzymes that are expressed in multiple isoforms. We investigated the effects of this diversity on the integration of the pathway in the target cell by comparing prefrontal cortical neurones with striatal neurones which express a very specific set of signalling proteins. The prefrontal cortex and striatum both receive dopaminergic inputs and we analysed the dynamics of the cAMP/PKA signal triggered by dopamine D1 receptors in these two brain structures.

View Article and Find Full Text PDF

β-Adrenergic receptors (β-ARs) enhance cardiac contractility by increasing cAMP levels and activating PKA. PKA increases Ca²⁺-induced Ca²⁺ release via phosphorylation of L-type Ca²⁺ channels (LTCCs) and ryanodine receptor 2. Multiple cyclic nucleotide phosphodiesterases (PDEs) regulate local cAMP concentration in cardiomyocytes, with PDE4 being predominant for the control of β-AR-dependent cAMP signals.

View Article and Find Full Text PDF

Rationale: We have shown recently that particulate (pGC) and soluble guanylyl (sGC) cyclases synthesize cGMP in different compartments in adult rat ventricular myocytes (ARVMs).

Objective: We hypothesized that cGMP-dependent protein kinase (PKG) exerts a feedback control on cGMP concentration contributing to its intracellular compartmentation.

Methods And Results: Global cGMP levels, cGMP-phosphodiesterase (PDE) and pGC enzymatic activities were determined in purified ARVMs.

View Article and Find Full Text PDF

We investigated the role of phosphodiesterases (PDEs) in the integration of cAMP signals and protein kinase A (PKA) activity following beta-adrenergic stimulation, by carrying out real-time imaging of male mouse pyramidal cortical neurons expressing biosensors to monitor cAMP levels (Epac1-camps and Epac2-camps300) or PKA activity (AKAR2). In the soma, isoproterenol (ISO) increased the PKA signal to approximately half the maximal response obtained with forskolin, with a characteristic beta(1) pharmacology and an EC(50) of 4.5 nm.

View Article and Find Full Text PDF

A current challenge in cellular signaling is to decipher the complex intracellular spatiotemporal organization that any given cell type has developed to discriminate among different external stimuli acting via a common signaling pathway. This obviously applies to cAMP and cGMP signaling in the heart, where these cyclic nucleotides determine the regulation of cardiac function by many hormones and neuromediators. Recent studies have identified cyclic nucleotide phosphodiesterases as key actors in limiting the spread of cAMP and cGMP, and in shaping and organizing intracellular signaling microdomains.

View Article and Find Full Text PDF

Background: Cyclic guanosine monophosphate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides, such as atrial or brain natriuretic peptide, which activate the soluble and particulate forms of guanylyl cyclase, respectively. However, natriuretic peptides and NO donors exert different effects on cardiac and vascular smooth muscle function. We therefore tested whether these differences are due to an intracellular compartmentation of cGMP and evaluated the role of phosphodiesterase (PDE) subtypes in this process.

View Article and Find Full Text PDF