The water treatment depends exclusively on the identification of residues containing toxic chemical elements accumulated in NPs (nanoparticles), and ultrafine particles sourced from waste piles located at old, abandoned sulfuric acid factories containing phosphogypsum requires global attention. The general objective of this study is to quantify and analyze the hazardous chemical elements present in the leachate of waste from deactivated sulfuric acid factories, coupled in NPs and ultrafine particles, in the port region of the city of Imbituba, Santa Catarina, Brazil. Samples were collected in 2020, 2021, and 2022.
View Article and Find Full Text PDFThe main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafine particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identification was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafine particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy.
View Article and Find Full Text PDFThe Amazon River is the longest river in the world. The Tapajós River is a tributary to the Amazon. At their junction, a marked decrease in water quality is evident from negative impacts from the constant activity of clandestine gold mining in the Tapajós River watershed.
View Article and Find Full Text PDFThe deposition of remaining nanoparticles in the Caribbean Sea generates the formation of potentially dangerous elements, which influence at the imbalance of ecosystems. The detection of nanoparticles is not simple and the use of conventional methods is difficult application, which is why we highlight the immediacy and importance of this research for the areas of marine biology, urbanism, engineering and geosciences, applied in the Caribbean Sea. The general objective of this study is to evaluate the use of advanced methods for the determination of toxic nanoparticles, which can directly affect the development of marine organisms in the aquatic ecosystem in waters of the Caribbean Sea, favoring the construction of future international public policies with the elaboration of projects capable of mitigating these levels of contamination.
View Article and Find Full Text PDF