Publications by authors named "Liliana Minichiello"

The hypothalamus is the primary center of the brain that regulates energy homeostasis. The ventromedial hypothalamus (VMH) plays a central role in maintaining energy balance by regulating food intake, energy expenditure, and glucose levels. However, the cellular and molecular mechanisms underlying its functions are still poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying early events in neurodegenerative disorders, like Huntington's disease (HD), is essential for creating preventive treatments, particularly focusing on the role of dysfunctional indirect pathway spiny projection neurons (iSPNs) and increased dopamine levels.
  • The study reveals that genetic disruption of iSPN function in mice leads to heightened levels of striatal dopamine, potentially causing early symptoms like hyperkinesia, before observable dysfunction occurs.
  • By analyzing iSPNs, researchers found that reducing the protein GSTO2 could prevent dopaminergic issues and delay hyperkinetic symptoms, highlighting the significance of maintaining dopamine balance in HD progression.
View Article and Find Full Text PDF

In ataxia disorders, motor incoordination (ataxia) is primarily linked to the dysfunction and degeneration of cerebellar Purkinje cells (PCs). In spinocerebellar ataxia 6 (SCA6), for example, decreased BDNF-TrkB signalling appears to contribute to PC dysfunction and ataxia. However, abnormal BDNF-TrkB signalling in granule cells (GCs) may contribute to PC dysfunction and incoordination in ataxia disorders, as TrkB receptors are also present in GCs that provide extensive input to PCs.

View Article and Find Full Text PDF

Blood vessels serve as intermediate conduits for the extension of sympathetic axons towards target tissues, while also acting as crucial targets for their homeostatic processes encompassing the regulation of temperature, blood pressure, and oxygen availability. How sympathetic axons innervate not only blood vessels but also a wide array of target tissues is not clear. Here we show that in embryonic skin, after the establishment of co-branching between sensory nerves and blood vessels, sympathetic axons invade the skin alongside these sensory nerves and extend their branches towards these blood vessels covered by vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Tissue regeneration is limited in several organs, including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest an existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD).

View Article and Find Full Text PDF

Alveolar formation increases the surface area for gas exchange. A molecular understanding of alveologenesis remains incomplete. Here, we show that the autonomic nerve and alveolar myofibroblast form a functional unit in mice.

View Article and Find Full Text PDF

The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the gene, regulates neuronal Cl homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift.

View Article and Find Full Text PDF

Neurons can regulate the development, pathogenesis, and regeneration of target organs. However, the role of neurons during heart development and regeneration remains unclear. We genetically inhibited sympathetic innervation in vivo, which resulted in heart enlargement with an increase in cardiomyocyte number.

View Article and Find Full Text PDF

Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types.

View Article and Find Full Text PDF

The flat bones of the skull are densely innervated during development, but little is known regarding their role during repair. We describe a neurotrophic mechanism that directs sensory nerve transit in the mouse calvaria. Patent cranial suture mesenchyme represents an NGF (nerve growth factor)-rich domain, in which sensory nerves transit.

View Article and Find Full Text PDF

Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions.

View Article and Find Full Text PDF

Insulin-like growth factor 2 mRNA-binding proteins 1-3 (IGF2BP1-3, also known as IMP1-3) contribute to the regulation of RNAs in a transcriptome-specific context. Global deletion of the mRNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2 or IMP2) in mice causes resistance to obesity and fatty liver induced by a high-fat diet (HFD), whereas liver-specific IMP2 overexpression results in steatosis. To better understand the role of IMP2 in hepatic triglyceride metabolism, here we crossed mice expressing albumin-Cre with mice bearing a floxed gene to generate hepatocyte-specific IMP2 knockout (LIMP2 KO) mice.

View Article and Find Full Text PDF

Genetic variants affecting pancreatic islet enhancers are central to T2D risk, but the gene targets of islet enhancer activity are largely unknown. We generate a high-resolution map of islet chromatin loops using Hi-C assays in three islet samples and use loops to annotate target genes of islet enhancers defined using ATAC-seq and published ChIP-seq data. We identify candidate target genes for thousands of islet enhancers, and find that enhancer looping is correlated with islet-specific gene expression.

View Article and Find Full Text PDF

Insulin-like growth factor 2 (IGF2) mRNA binding protein 2 (IMP2) was selectively deleted from adult mouse muscle; two phenotypes were observed: decreased accrual of skeletal muscle mass after weaning and reduced wheel-running activity but normal forced treadmill performance. Reduced wheel running occurs when mice are fed a high-fat diet but is normalized when mice consume standard chow. The two phenotypes are due to altered output from different IMP2 client mRNAs.

View Article and Find Full Text PDF

The gene encoding the Insulin-like Growth Factor 2 mRNA binding protein 2/IMP2 is amplified and overexpressed in many human cancers, accompanied by a poorer prognosis. Mice lacking IMP2 exhibit a longer lifespan and a reduced tumor burden at old age. Herein we show in a diverse array of human cancer cells that IMP2 overexpression stimulates and IMP2 elimination diminishes proliferation by 50-80%.

View Article and Find Full Text PDF

Sensory nerves emanating from the dorsal root extensively innervate the surfaces of mammalian bone, a privileged location for the regulation of biomechanical signaling. Here, we show that NGF-TrkA signaling in skeletal sensory nerves is an early response to mechanical loading of bone and is required to achieve maximal load-induced bone formation. First, the elimination of TrkA signaling in mice harboring mutant TrkA alleles was found to greatly attenuate load-induced bone formation induced by axial forelimb compression.

View Article and Find Full Text PDF

Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells.

View Article and Find Full Text PDF

Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation.

View Article and Find Full Text PDF

Developing tissues dictate the amount and type of innervation they require by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase receptors. Here, we show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons were observed at perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers of incipient ossification.

View Article and Find Full Text PDF

Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior glucose tolerance and insulin sensitivity, increased energy expenditure, and better defense of core temperature on cold exposure.

View Article and Find Full Text PDF

Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons.

View Article and Find Full Text PDF

Many key components of innate immunity to infection are shared between Drosophila and humans. However, the fly Toll ligand Spaetzle is not thought to have a vertebrate equivalent. We have found that the structurally related cystine-knot protein, nerve growth factor β (NGFβ), plays an unexpected Spaetzle-like role in immunity to Staphylococcus aureus infection in chordates.

View Article and Find Full Text PDF

Background: Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking.

Results: Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4.

View Article and Find Full Text PDF

The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA.

View Article and Find Full Text PDF

Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity leads to debilitating neuroendocrine or metabolic disorders such as Cushing's syndrome (CS). Glucocorticoids control HPA axis activity through negative feedback to the pituitary gland and the central nervous system (CNS). However, the cellular mechanisms involved are poorly understood, particularly in the CNS.

View Article and Find Full Text PDF