PDA J Pharm Sci Technol
January 2018
Unlabelled: Studies of the extractable profiles of bioprocessing components have become an integral part of drug development efforts to minimize possible compromise in process performance, decrease in drug product quality, and potential safety risk to patients due to the possibility of small molecules leaching out from the components. In this study, an effective extraction solvent system was developed to evaluate the organic extractable profiles of single-use bioprocess equipment, which has been gaining increasing popularity in the biopharmaceutical industry because of the many advantages over the traditional stainless steel-based bioreactors and other fluid mixing and storage vessels. The chosen extraction conditions were intended to represent aggressive conditions relative to the application of single-use bags in biopharmaceutical manufacture, in which aqueous based systems are largely utilized.
View Article and Find Full Text PDFRationale: Trace levels of bis(2,4-di-tert-butylphenyl)phosphate (BdtbPP) leaching from single-use bioreactors (SUBs) were recently found to be highly detrimental to mammalian cell growth. The traditional approach to detect the leachable requires time-consuming solvent extraction of SUBs. To assist the qualification of SUBs and/or their manufacturing raw materials in biopharmaceutical development and manufacturing, it is essential to develop a rapid and sensitive analytical approach for detecting this leachable and related compounds, which is described in this study.
View Article and Find Full Text PDFA current trend in the production of biopharmaceuticals is the replacement of fixed stainless steel fluid-handling units with disposable plastic bags. Such single-use systems (SUS) offer numerous advantages, but also introduce a new set of materials into the production process and consequently expose biomanufacturers to a new set of risks related to those materials, not to mention reliance on an entirely new supply chain. In the course of developing and conducting a cell-growth-based test for suitability of disposable plastic components destined for use in cell culture operations, we discovered that the cytotoxic compound bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP) leaches out of certain bags and into cell culture media in concentrations that are deleterious to cell growth.
View Article and Find Full Text PDF