Water is the principal source of human exposure to fluoride (F). The high permeability of the placenta and blood-brain barrier to F during the intrauterine life up to the end of lactation may be crucial to neurological fetus development. Therefore, this study explores the effects of 5 and 10 mg/l F exposure during entire gestation and lactation periods, through neurobehavioral and biochemical tests performed on 90-day-old male offspring rats.
View Article and Find Full Text PDFThough the facilitating influence of stress on drug abuse is well documented, the mechanisms underlying this interaction have yet to be fully elucidated. The present study explores the neurobiological mechanisms underpinning the sensitized response to the psychomotor-stimulating effects of cocaine following chronic restraint stress (CRS), emphasizing the differential contribution of both subcompartments of the nucleus accumbens (NA), the core (NAcore) and shell (NAshell), to this phenomenon. Adult male Wistar rats were restrained for 2 h/day for 7 days and, 2 weeks after the last stress exposure (day 21), all animals were randomly assigned to behavioral, biochemical or neurochemical tests.
View Article and Find Full Text PDFBrain Behav Immun
March 2022
Stressful experience-induced cocaine-related behaviors are associated with a significant impairment of glutamatergic mechanisms in the Nucleus Accumbens core (NAcore). The hallmarks of disrupted glutamate homeostasis following restraint stress are the enduring imbalance of glutamate efflux after a cocaine stimulus and increased basal concentrations of extracellular glutamate attributed to GLT-1 downregulation in the NAcore. Glutamate transmission is tightly linked to microglia functioning.
View Article and Find Full Text PDFActin dynamics in dendritic spines can be associated with the neurobiological mechanisms supporting the comorbidity between stress exposure and cocaine increase rewards. The actin cytoskeleton remodeling in the nucleus accumbens (NA) has been implicated in the expression of stress-induced cross-sensitization with cocaine. The present study evaluates the involvement of cofilin, a direct regulator of actin dynamics, in the impact of stress on vulnerability to cocaine addiction.
View Article and Find Full Text PDFPreclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats.
View Article and Find Full Text PDFAltered glutamate transmission within the nucleus accumbens (NAc) has been proposed as a central mechanism underlying behavioural sensitisation associated with repeated cocaine exposure. In addition to glutamate, enkephalin, an endogenous opioid peptide derived from proenkephalin, is necessary for the neuroadaptations associated with chronic cocaine. However, the influence of enkephalin on long-term changes in glutamate transmission within the NAc associated with cocaine-induced sensitisation has not been described.
View Article and Find Full Text PDFNeurotoxicology
December 2019
Developmentally-lead (Pb)-exposed rats showed an enhanced vulnerability to the stimulating and motivational effects of ethanol (EtOH). This is accompanied by differential activity of the brain EtOH-metabolizing enzymes catalase (CAT) and mitochondrial aldehyde dehydrogenase (ALDH2). Based on the theory that brain acetaldehyde accumulation is associated with the reinforcing properties of EtOH, this study sought to determine brain CAT and ALDH2 expression in limbic areas of control and Pb-exposed animals after voluntary EtOH intake.
View Article and Find Full Text PDFExposure to fluoride (F) during the development affects central nervous system of the offspring rats which results in the impairment of cognitive functions. However, the exact mechanisms of F neurotoxicity are not clearly defined. To investigate the effects of perinatal F exposure on memory ability of young rat offspring, dams were exposed to 5 and 10 mg/L F during gestation and lactation.
View Article and Find Full Text PDFLead (Pb) is a developmental neurotoxicant. We have demonstrated that perinatally Pb-exposed rats consume more ethanol than their control counterparts, a response that seems to be mediated by catalase (CAT) and centrally-formed acetaldehyde, ethanol's first metabolite with attributed reinforcing effects in the brain. The present study sought to disrupt ethanol intake (2-10% ethanol v/v) in rats exposed to 220 ppm Pb or filtered water during gestation and lactation.
View Article and Find Full Text PDFDaily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure.
View Article and Find Full Text PDFEnkephalin expression is high in mesocorticolimbic areas associated with psychostimulant-induced behavioral and neurobiological effects, and may also modulate local neurotransmission in this circuit network. Psychostimulant drugs, like amphetamine and cocaine, significantly increase the content of enkephalin in these brain structures, but we do not yet understand the specific significance of this drug-induced adaptation. In this review, we summarize the neurochemical and molecular mechanism of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and the contribution of this opioid peptide in the pivotal neuroadaptations and long-term behavioral changes underlying psychostimulant addiction.
View Article and Find Full Text PDFAcute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from and , induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system.
View Article and Find Full Text PDFThis review article provides evidence of the impact of the environmental contaminant lead (Pb) on the pattern of the motivational effects of ethanol (EtOH). To find a mechanism that explains this interaction, the focus of this review article is on central EtOH metabolism and the participating enzymes, as key factors in the modulation of brain acetaldehyde (ACD) accumulation and resulting effect on EtOH intake. Catalase (CAT) seems a good candidate for the shared mechanism between Pb and EtOH due to both its antioxidant and its brain EtOH-metabolizing properties.
View Article and Find Full Text PDFLead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects.
View Article and Find Full Text PDFRelapse is a common feature of cocaine addiction. In rodents, it can be elicited by cues, stress or the drug. Restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP) is a useful model to study the mechanisms involved in stress-induced relapse of drug-seeking behavior.
View Article and Find Full Text PDFIt is known that exposure to high concentrations of Fluoride (F) produces deleterious health effects in human population. However, in the last years it has been concluded that low concentrations of F may have adverse health effects as well. Transplacental passage of F and its incorporation into foetal tissues has been demonstrated.
View Article and Find Full Text PDFBehavioral sensitization to cocaine is associated to neuroadaptations that contribute to addiction. Enkephalin is highly expressed in mesocorticolimbic areas associated with cocaine-induced sensitization; however, their influence on cocaine-dependent behavioral and neuronal plasticity has not been explained. In this study, we employed a knockout (KO) model to investigate the contribution of enkephalin in cocaine-induced behavioral sensitization.
View Article and Find Full Text PDFA single or repeated exposure to psychostimulants induces long-lasting neuroadaptative changes. Different neurotransmitter systems are involved in these responses including the neuropeptide angiotensin II. Our study tested the hypothesis that the neuroadaptative changes induced by amphetamine produce alterations in brain RAS components that are involved in the expression of the locomotor sensitization to the psychostimulant drug.
View Article and Find Full Text PDFIt was already found that Ang II AT₁ receptors are involved in the neuroadaptative changes induced by a single exposure to amphetamine, and such changes are related to the development of behavioral and neurochemical sensitization. The induction of the immediately early gene c-fos has been used to define brain activated areas by amphetamine. Our aim was to evaluate the participation of AT₁ receptors in the neuronal activation induced by amphetamine sensitization.
View Article and Find Full Text PDFBackground: Environmental lead (Pb) exposure and alcohol abuse pose significant public health problems for our society. One of the proposed mechanisms of action of the developmental neurotoxicant Pb is related to its ability to affect antioxidant enzymes, including catalase (CAT). Ethanol's (EtOH) motivational effects are postulated to be mediated by the CAT-dependent acetaldehyde generated in the brain.
View Article and Find Full Text PDFMicroglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival.
View Article and Find Full Text PDFThis study investigated the consequence of repeated stress on actin cytoskeleton remodeling in the nucleus accumbens (NAc) and prefrontal cortex (Pfc), and the involvement of this remodeling in the expression of stress-induced motor cross-sensitization with cocaine. Wistar rats were restrained daily (2 h) for 7 days and, 3 weeks later, their NAc and Pfc were dissected 45 min after acute saline or cocaine (30 mg/kg i.p.
View Article and Find Full Text PDFDespite the mesocorticolimbic dopaminergic pathway being one of the main substrates underlying stimulating and reinforcing effects induced by psychostimulant drugs, there is little information regarding its role in their effects at the immune level. We have previously demonstrated that acute exposure to amphetamine (5 mg/kg, i.p.
View Article and Find Full Text PDFIt has been shown that a single exposure to amphetamine is sufficient to induce long-term behavioral, neurochemical, and neuroendocrine sensitization in rats. Dopaminergic neurotransmission in the nucleus accumbens and the caudate-putamen plays a critical role in the addictive properties of drugs of abuse. Angiotensin (Ang) II receptors are found on the soma and terminals of mesolimbic dopaminergic neurons and it has been shown that Ang II acting through its AT₁ receptors facilitates dopamine release.
View Article and Find Full Text PDF