Publications by authors named "Liliana M Almeida"

Developmental diseases are challenging to investigate due to their clinical heterogeneity and relatively low prevalence. The Wolcott-Rallison Syndrome (WRS) is a rare developmental disease characterized by skeletal dysplasia and permanent neonatal diabetes due to loss-of-function mutations in the endoplasmic reticulum stress kinase PERK (EIF2AK3). The lack of efficient and less invasive therapies for WRS highlights the need for new animal models that replicate the complex pathological phenotypes, while preserving scalability for drug screening.

View Article and Find Full Text PDF

Stress response pathways like the integrated stress response (ISR), the mitochondrial unfolded protein response (UPR) and the heat shock response (HSR) have emerged as part of the pathophysiology of neurodegenerative diseases, including Huntington's disease (HD) - a currently incurable disease caused by the production of mutant huntingtin (mut-Htt). Previous data from HD patients suggest that ISR is activated while UPR and HSR are impaired in HD. The study of these stress response pathways as potential therapeutic targets in HD requires cellular models that mimic the activation status found in HD patients of such pathways.

View Article and Find Full Text PDF

Protein kinase RNA-like ER kinase (PERK) is an endoplasmic reticulum (ER) stress sensor that responds to the accumulation of misfolded proteins. Once activated, PERK initiates signalling pathways that halt general protein production, increase the efficiency of ER quality control, and maintain redox homeostasis. PERK activation also protects mitochondrial homeostasis during stress.

View Article and Find Full Text PDF

Aims: Huntington's disease (HD) is caused by a mutant huntingtin protein that misfolds, yields toxic N-terminal fragments, aggregates, and disrupts proteostasis. The Hsp70 chaperone is a potential therapeutic target as it prevents proteotoxicity by favouring protein folding, disaggregation, or degradation. We tested the hypothesis that allosteric Hsp70 activation with a pharmacological mimetic of the Hsp70 co-chaperone Hip, YM-1, could modulate huntingtin proteostasis.

View Article and Find Full Text PDF