Effective anti-tumor immunity is driven by cytotoxic CD8 T cells with specificity for tumor antigens. However, the factors that control successful tumor rejection are not well understood. Here we identify a subpopulation of CD8 T cells that are tumor-antigen-specific and can be identified by KIR expression but paradoxically impair anti-tumor immunity in patients with melanoma.
View Article and Find Full Text PDFThe promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment.
View Article and Find Full Text PDFEffective anti-tumor immunity is largely driven by cytotoxic CD8 T cells that can specifically recognize tumor antigens. However, the factors which ultimately dictate successful tumor rejection remain poorly understood. Here we identify a subpopulation of CD8 T cells which are tumor antigen-specific in patients with melanoma but resemble KIRCD8 T cells with a regulatory function (Tregs).
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) are increasingly being used to manage multiple tumor types. Unfortunately, immune-related adverse events affect up to 60% of recipients, often leading to treatment discontinuation in settings where few alternative cancer therapies may be available. Checkpoint inhibitor induced colitis (ICI-colitis) is a common toxicity for which the underlying mechanisms are poorly defined.
View Article and Find Full Text PDFCD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors.
View Article and Find Full Text PDFGenome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7).
View Article and Find Full Text PDFAdoptive cell therapy (ACT) using tumor infiltrating lymphocytes (TIL) is being studied in multiple tumor types. However, little is known about clonal cell expansion in vitro and persistence of the ACT product in vivo. We performed single-cell RNA and T-Cell Receptor (TCR) sequencing on serial blood and tumor samples from a patient undergoing ACT, who did not respond.
View Article and Find Full Text PDFA key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses.
View Article and Find Full Text PDFThe T cell receptor (TCR) endows T cells with antigen specificity and is central to nearly all aspects of T cell function. Each naïve T cell has a unique TCR sequence that is stably maintained during cell division. In this way, the TCR serves as a molecular barcode that tracks processes such as migration, differentiation, and proliferation of T cells.
View Article and Find Full Text PDFImmune checkpoint blockade has demonstrated success in treating cancer but can lead to immune-related adverse events (irAEs), illustrating the centrality of these pathways in tolerance. Here, we describe programmed cell death protein 1 (PD-1) control of T cell responses, focusing on its unique restraint of regulatory T cell function. We examine successes and limitations of checkpoint blockade immunotherapy and review clinical and mechanistic features of irAEs.
View Article and Find Full Text PDFPurpose Of Review: Immunotherapies such as immune checkpoint blockade have revolutionized cancer treatment, but current approaches have failed to improve outcomes in glioblastoma and other brain tumours. T cell dysfunction has emerged as one of the major barriers for the development of central nervous system (CNS)-directed immunotherapy. Here, we explore the unique requirements that T cells must fulfil to ensure immune surveillance in the CNS, and we analyse T cell dysfunction in glioblastoma (GBM) through the prism of CNS-resident immune responses.
View Article and Find Full Text PDFLittle is known about the subcellular localization and function of programmed cell death 4 (PDCD4) in melanoma. Our past studies suggest PDCD4 interacts with Pleckstrin Homology Domain Containing A5 (PLEKHA5) to influence melanoma brain metastasis outcomes, as high intracranial PDCD4 expression leads to improved survival. We aimed to define the subcellular distribution of PDCD4 in melanoma and in the tumor microenvironment during neoplastic progression and its impact on clinical outcomes.
View Article and Find Full Text PDFUnderstanding the relationship between tumor and peripheral immune environments could allow longitudinal immune monitoring in cancer. Here, we examined whether T cells that share the same TCRαβ and are found in both tumor and blood can be interrogated to gain insight into the ongoing tumor T cell response. Paired transcriptome and TCRαβ repertoire of circulating and tumor-infiltrating T cells were analyzed at the single-cell level from matched tumor and blood from patients with metastatic melanoma.
View Article and Find Full Text PDFNat Rev Immunol
November 2020
Regulatory T (T) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in T cell function and decreases in T cell numbers have been observed in patients with autoimmunity and the opposite effects on T cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating T cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
May 2020
Objective: To identify coinhibitory immune pathways important in the brain, we hypothesized that comparison of T cells in lesions from patients with MS with tumor-infiltrating T cells (TILs) from patients with glioblastoma multiforme may reveal novel targets for immunotherapy.
Methods: We collected fresh surgical resections and matched blood from patients with glioblastoma, blood and unmatched postmortem CNS tissue from patients with MS, and blood from healthy donors. The expression of TIGIT, CD226, and their shared ligand CD155 as well as PD-1 and PDL1 was assessed by both immunohistochemistry and flow cytometry.
Th1 Tregs are characterized by the acquisition of proinflammatory cytokine secretion and reduced suppressor activity. Th1 Tregs are found at increased frequency in autoimmune diseases, including type 1 diabetes and multiple sclerosis (MS). We have previously reported that in vitro stimulation with IL-12 recapitulates the functional and molecular features of MS-associated Th1 Tregs, revealing a central role for hyperactivation of the Akt pathway in their induction.
View Article and Find Full Text PDFThe genetic predisposition to multiple sclerosis (MS) is most strongly conveyed by MHC class II haplotypes, possibly by shaping the autoimmune CD4 T cell repertoire. Whether Ag-processing enzymes contribute to MS susceptibility by editing the peptide repertoire presented by these MHC haplotypes is unclear. Thymus-specific serine protease (TSSP) is expressed by thymic epithelial cells and thymic dendritic cells (DCs) and, in these two stromal compartments, TSSP edits the peptide repertoire presented by class II molecules.
View Article and Find Full Text PDFImmune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM), the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25-CD127+Foxp3-effector cells in healthy subjects and in patients with GBM.
View Article and Find Full Text PDFImmunotherapy has emerged as a potent approach for treating aggressive cancers, such as non-small-cell lung tumors and metastatic melanoma. Clinical trials are now in progress for patients with malignant gliomas; however, a better understanding of how these tumors escape immune surveillance is required to enhance antitumor immune responses. With gliomas, the recruitment of CD8+ T cells to the tumor is impaired, in part preventing containment or elimination of the tumor.
View Article and Find Full Text PDFThe introduction of immunotherapy with checkpoint receptor blockade has changed the treatment of advanced cancers, at times inducing prolonged remission. Nevertheless, the success rate of the approach is variable across patients and different tumor types, and treatment is often accompanied by severe immune-related side effects, suggesting the importance of co-inhibitory pathway for both prevention of autoimmunity and failure of tumor rejection. A better understanding of how to uncouple anti-tumor activity from loss of self-tolerance is necessary to increase the therapeutic efficacy of checkpoint immunotherapy.
View Article and Find Full Text PDFT-cell polyspecificity, predicting that individual T cells recognize a continuum of related ligands, implies that multiple antigens can tolerize T cells specific for a given self-antigen. We previously showed in C57BL/6 mice that part of the CD4(+) T-cell repertoire specific for myelin oligodendrocyte glycoprotein (MOG) 35-55 also recognizes the neuronal antigen neurofilament medium (NF-M) 15-35. Such bi-specific CD4(+) T cells are frequent and produce inflammatory cytokines after stimulation.
View Article and Find Full Text PDFImmunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4CD25FoxP3 Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1 Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing, and cytometry by time of flight (CyTOF).
View Article and Find Full Text PDF