Growth hormone (GH) binding to GH receptor activates janus kinase 2 (JAK2)-signal transducer and activator of transcription 5b (STAT5b) pathway, which stimulates transcription of insulin-like growth factor-1 (IGF1), insulin-like growth factor binding protein 3 (IGFBP3) and insulin-like growth factor acid-labile subunit (IGFALS). Although STAT5B deficiency was established as an autosomal recessive disorder, heterozygous dominant-negative STAT5B variants have been reported in patients with less severe growth deficit and milder immune dysfunction. We developed an in vivo functional assay in zebrafish to characterize the pathogenicity of three human STAT5B variants (p.
View Article and Find Full Text PDFMammalian acid-labile subunit (ALS) is a serum protein that binds binary complexes between Insulin-like growth factors (IGFs) and Insulin-like growth factor-binding proteins (IGFBPs) extending their half-life and keeping them in the vasculature. Human ALS deficiency (ACLSD), due to homozygous or compound heterozygous mutations in IGFALS, leads to moderate short stature with reduced levels of IGF-I and IGFBP-3. There is only one corresponding zebrafish ortholog gene and it has not yet been studied.
View Article and Find Full Text PDFBackground: The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure.
Objective: To characterize the molecular defect in a patient with short stature and partial GHI.
Germinal heterozygous activating STAT3 mutations represent a novel monogenic defect associated with multi-organ autoimmune disease and, in some cases, severe growth retardation. By using whole-exome sequencing, we identified two novel STAT3 mutations, p.E616del and p.
View Article and Find Full Text PDFObjective: Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-I and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families.
Design: Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives.
Acid-labile subunit (ALS) is essential for stabilization of IGF-I and IGFBP-3 in ternary complexes within the vascular system. ALS deficient (ALS-D) patients and a subset of children with idiopathic short stature (ISS), presenting IGFALS gene variants, show variable degree of growth retardation associated to IGF-I and IGFBP-3 deficiencies. The aim of this study was to evaluate the potential pathogenicity of eleven IGFALS variants identified in ALS-D and ISS children using in silico and in vitro approaches.
View Article and Find Full Text PDFBackground: In acid-labile subunit (ALS)-deficient families, heterozygous carriers of IGFALS gene mutations are frequently shorter than their wild-type relatives, suggesting that IGFALS haploinsufficiency could result in short stature. We have characterized IGFALS gene variants in idiopathic short stature (ISS) and in normal children, determining their impact on height and the IGF system.
Patients And Methods: In 188 normal and 79 ISS children levels of IGF-1, IGFBP-3, ALS, ternary complex formation (TCF) and IGFALS gene sequence were determined.
States of growth hormone (GH) resistance, such those observed in Laron dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout [GHRKO]) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model.
View Article and Find Full Text PDFUnderstanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice).
View Article and Find Full Text PDFAn increased availability of plasma free fatty acids (FFA) seems to play a role in the early stages of experimental type 1 diabetes mellitus induced in C57BL/6J mice by multiple low doses of streptozotoxin (mld-STZ). We analyzed the temporal changes of: (1) plasma and skeletal muscle lipids and their relationship with glucose metabolism; (2) triglyceride (Tg) concentration in isolated islets; (3) intraperitoneal glucose tolerance test; and (4) insulin secretion patterns when the three mutually interactive glucose signaling pathways were activated. Animals were killed by cervical dislocation at days 4, 6, 7, 8, 9 and 12 post first injection of mld-STZ.
View Article and Find Full Text PDFAllograft function and metabolic effects of four treatment regimens, namely, methylprednisone (MP) standard dose (MP-STD), deflazacort (DFZ), MP-late steroid withdrawal (MP-LSW), and MP-very low dose (MP-VLD), were evaluated in prepubertal patients. MP was decreased by month 4 post-transplantation to 0.2 mg/kg/day in MP-STD and DFZ patients and to <0.
View Article and Find Full Text PDFObjective: Administration of multiple low doses of streptozotocin (mld-SZ) to mice results in the development of autoimmune diabetes. Hyperglycemia does not develop until a few days after the last injection. In this study, we explored immune-related alterations found in the very early stages of this diabetic syndrome and the capacity of mononuclear spleen cells (MSs) from mld-SZ mice to impair insulin secretion.
View Article and Find Full Text PDFThe present work examines the role of lipids in the development of the Type 1 diabetes induced by the administration of multiple low doses of streptozotocin (STZ) in C57BL/6J mice. The study was performed before and after the onset of clear hyperglycemia, and the results were as follows. First, 6 days after the first dose of STZ, while plasma glucose and insulin levels remained similar to those observed in the control mice, plasma free fatty acid (FFA) levels were significantly increased (P < 0.
View Article and Find Full Text PDFRats fed a sucrose-rich diet (SRD) develop hypertriglyceridemia and a marked decline in beta cell function. The purpose of this study was to determine whether changes in triglyceride concentration and/or altered pyruvate dehydrogenase complex (PDHc) activity contribute to the beta cell dysfunction, and to analyze the effect of dietary fish oil on the altered patterns of insulin secretion and peripheral insulin resistance. Rats were fed an SRD for 210 d.
View Article and Find Full Text PDFFeeding rats a sucrose rich diet (SRD) induces hypertriglyceridemia and insulin resistance. The purposes of this study were to determine the time course of changes in lipid and glucose metabolism in the gastrocnemius muscle, both in the basal state and after the euglycemic hyperinsulinemic clamp, in rats fed a SRD for 3, 15 or 30 wk, and to analyze the changes in glucose-stimulated insulin secretion from perifused isolated islets from SRD-fed rats and their relationships to peripheral insulin insensitivity. A control group of rats was fed a control diet (CD) for the same period of time.
View Article and Find Full Text PDF