Bone marrow-derived mesenchymal stem cells (MSC) can be differentiated into myocytes, as well as adipocytes, chondrocytes, and osteocytes in culture. Calcium channels mediate excitation-contraction coupling and are essential for the function of muscle. However, little is known about the expression of calcium channel subunits and calcium handling in stem cells.
View Article and Find Full Text PDFJ Signal Transduct
December 2012
Satellite cells can maintain or repair muscle because they possess stem cell properties, making them a valuable option for cell therapy. However, cell transplants into skeletal muscle of patients with muscular dystrophy are limited by donor cell attachment, migration, and survival in the host tissue. Cells used for therapy are selected based on specific markers present in the plasma membrane.
View Article and Find Full Text PDFOur aim was to further elucidate the cardiac lineage development of bone marrow-derived mesenchymal stem cells (MSC) and to identify cells which had the potential for cardiac myogenic differentiation when compared to skeletal muscle satellite (Sk-sat) myogenesis. Unlike Sk-sat, MSC expressed the early cardiac markers Nkx2.5 and GATA4.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential, previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage, culture milieu, and enrichment for specific cell subtypes before and during differentiation.
View Article and Find Full Text PDF