Objectives: Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A).
View Article and Find Full Text PDFBackground: The human dicer1 gene has been predicted to produce several mRNA variants that encode truncated Dicer1 proteins of varying lengths. One of these Dicer1 variants, Dicer1e, was recently found to be differentially expressed in breast cancer cells. Because the expression and function of the Dicer1e protein variant has not been well characterized and the underlying molecular mechanisms for the development of oral squamous cell carcinomas (OSCCs) are poorly understood, the present study sought to characterize the biological role of Dicer1e and determine its relationship, if any, to OSCC pathogenesis.
View Article and Find Full Text PDFDespite a better understanding of the pathogenesis of oral cancer, its treatment outcome remains poor. Thus, there is a need for new therapeutic strategies to improve the prognosis of this disease. RNA interference (RNAi) appears to be a promising therapeutic tool for the treatment of many diseases, including oral cancer.
View Article and Find Full Text PDFThis study addresses the role of glycogen synthase kinase (GSK)-3β signaling in the tumorigenic behavior of melanoma. Immunohistochemical staining revealed GSK3β to be focally expressed in the invasive portions of 12 and 33% of primary and metastatic melanomas, respectively. GSK3 inhibitors and small interfering RNA (siRNA) knockdown of GSK3β were found to inhibit the motile behavior of melanoma cells in scratch wound, three-dimensional collagen-implanted spheroid, and modified Boyden chamber assays.
View Article and Find Full Text PDFBackground: The past 30 years have seen little improvement in the survival of patients with stage IV melanoma. Following the discovery of activating BRAF mutations in most melanomas, a wealth of preclinical experimentation has validated the BRAF/MAPK pathway as an excellent therapeutic target in melanoma. Despite these encouraging results, early clinical trials on BRAF/MAPK inhibition have been disappointing.
View Article and Find Full Text PDFIntroduction: The primary histologic finding in many urologic disorders, including Peyronie's disease (PD), is fibrosis, mainly mediated by the transforming growth factor beta1 (TGFbeta1).
Aim: To determine whether another member of the TGFbeta family, myostatin, (i) is expressed in the human PD plaque and normal tunica albuginea (TA), their cell cultures, and the TGFbeta1-induced PD lesion in the rat model; (ii) is responsible for myofibroblast generation, collagen deposition, and plaque formation; and (iii) mediates the profibrotic effects of TGFbeta1 in PD.
Methods: Human TA and PD tissue sections, and cell cultures from both tissues incubated with myostatin and TGFbeta1 were subjected to immunocytochemistry for myostatin and alpha-smooth muscle actin (ASMA).
Introduction: Over-expression of penile neuronal nitric oxide synthase (PnNOS) from a plasmid ameliorates aging-related erectile dysfunction (ED), whereas over-expression of the protein inhibitor of NOS (PIN), that binds to nNOS, increases ED.
Aim: To improve this form of gene therapy for ED by comparing the electrical field response of short hairpin RNA (shRNA) for PIN with that of antisense PIN RNA.
Main Outcome Measure: Both shRNA and antisense RNA gene therapy vectors increased intracavernosal pressure in aged rats.
Background: Myostatin negatively regulates skeletal muscle growth. Myostatin knockout mice exhibit muscle hypertrophy and decreased interstitial fibrosis. We investigated whether a plasmid expressing a short hairpin interfering RNA (shRNA) against myostatin and transduced using electroporation would increase local skeletal muscle mass.
View Article and Find Full Text PDFTissue ossification in Peyronie disease (commonly known as Peyronie's disease [PD]), a localized fibrotic lesion within the tunica albuginea (TA) of the penis, may result from osteogenic differentiation of fibroblasts, myofibroblasts, and/or adult stem cells in the TA, and may be triggered by chronic inflammation, oxidative stress, and profibrotic factors like transforming growth factor beta 1 (TGFB1). In this study, we have investigated whether cultures of cells from normal TA and PD plaques undergo osteogenesis, express markers for stem cells, and originate other cell lineages via processes modulated by TGFB1. We found that TA and PD cells in osteogenic medium (OM) expressed osteogenic markers, alkaline phosphatase, and osteopontin and underwent calcification.
View Article and Find Full Text PDF