Publications by authors named "Liliana Ballesteros Mejia"

BOLD, the Barcode of Life Data System, supports the acquisition, storage, validation, analysis, and publication of DNA barcodes, activities requiring the integration of molecular, morphological, and distributional data. Its pivotal role in curating the reference library of DNA barcodes, coupled with its data management and analysis capabilities, makes it a central resource for biodiversity science. It enables rapid, accurate identification of specimens and also reveals patterns of genetic diversity and evolutionary relationships among taxa.

View Article and Find Full Text PDF

Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions.

View Article and Find Full Text PDF

Background: Rodents are among the most notorious invasive alien species worldwide. These invaders have substantially impacted native ecosystems, food production and storage, local infrastructures, human health and well-being. However, the lack of standardized and understandable estimation of their impacts is a serious barrier to raising societal awareness, and hampers effective management interventions at relevant scales.

View Article and Find Full Text PDF

Caterpillars of the Neotropical genus Lonomia (Lepidoptera: Saturniidae) are responsible for some fatal envenomation of humans in South America inducing hemostatic disturbances in patients upon skin contact with the caterpillars' spines. Currently, only two species have been reported to cause hemorrhagic syndromes in humans: Lonomia achelous and Lonomia obliqua. However, species identifications have remained largely unchallenged despite improved knowledge of venom diversity and growing evidence that the taxonomy used over past decades misrepresents and underestimates species diversity.

View Article and Find Full Text PDF

The regions of the Andes and Caribbean-Mesoamerica are both hypothesized to be the cradle for many Neotropical lineages, but few studies have fully investigated the dynamics and interactions between Neotropical bioregions. The New World hawkmoth genus is the most taxonomically diverse genus in the Sphingidae, with the highest endemism and richness in the Andes and Caribbean-Mesoamerica. We integrated phylogenomic and DNA barcode data and generated the first time-calibrated tree for this genus, covering 93.

View Article and Find Full Text PDF

The Saturniidae is one of the most emblematic families of moths, comprising nearly 3000 species distributed globally. In this study, DNA barcode analysis and comparative morphology were combined to describe three new species within the genus , which is the most diverse genus in the family. Decaëns, Rougerie & Bonilla, , Decaëns, Rougerie & Bonilla, , and Decaëns, Rougerie & Bénéluz, are described from the Colombian Orinoco watershed, the Colombian Eastern Cordillera, and the area of endemism of Belém in the Brazilian Amazonia, respectively.

View Article and Find Full Text PDF

We contend that the exclusive focus on the English language in scientific research might hinder effective communication between scientists and practitioners or policy makers whose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages.

View Article and Find Full Text PDF

Background: Herbivorous insects represent a major fraction of global biodiversity and the relationships they have established with their food plants range from strict specialists to broad generalists. Our knowledge of these relationships is of primary importance to basic (e.g.

View Article and Find Full Text PDF

Restricted gene flow may lead to the loss of genetic diversity and higher genetic differentiation among populations, but the genetic consequences of megafauna extinction for plant populations still remain to be assessed. We performed a phylogenetic-independent meta-analysis across 102 Neotropical plants to test the hypothesis that plant species with megafaunal seed dispersal syndrome have a lower genetic diversity and a higher genetic differentiation than those without it. We classified as megafauna-dependent plant species those that potentially relied only on megafauna to seed dispersal, and as megafauna-independent those that relied on megafauna and other seed dispersers.

View Article and Find Full Text PDF

Background: Bombycoidea is an ecologically diverse and speciose superfamily of Lepidoptera. The superfamily includes many model organisms, but the taxonomy and classification of the superfamily has remained largely in disarray. Here we present a global checklist of Bombycoidea.

View Article and Find Full Text PDF

The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not be able to cope with ongoing climatic changes. Here, we coupled ecological niche modelling (ENM) and genetic simulations to forecast the effects of climatic changes on the genetic diversity and the structure of genetic clusters.

View Article and Find Full Text PDF

We studied genetic diversity and differentiation patterns in Neotropical plants to address effects of life history traits (LHT) and ecological attributes based on an exhaustive literature survey. We used generalized linear mixed models (GLMMs) to test the effects as fixed and random factors of growth form, pollination and dispersal modes, mating and breeding systems, geographical range and habitat on patterns of genetic diversity (HS, HeS, π and h), inbreeding coefficient (FIS), allelic richness (AR) and differentiation among populations (FST) for both nuclear and chloroplast genomes. In addition, we used phylogenetic generalized least squares (pGLS) to account for phylogenetic independence on predictor variables and verify the robustness of the results from significant GLMMs.

View Article and Find Full Text PDF
Article Synopsis
  • The coexistence of various tree species in tropical forests is influenced by natural enemies that target seeds and seedlings, commonly known as the 'Janzen-Connell' effect.
  • Research in tropical forests on Barro Colorado Island shows that seed predation is better understood when considering the densities of multiple species rather than just the same species (conspecifics).
  • The study found that interactions with shared seed predators can either support or hinder the coexistence of different tree species, revealing a complex relationship between plant functional groups.
View Article and Find Full Text PDF

Many amphibian lineages show terrestrialization of their reproductive strategy and breeding is partially or completely independent of water. A number of causal factors have been proposed for the evolution of terrestrialized breeding. While predation has received repeated attention as a potential factor, the influence of other factors such as habitat has never been tested using appropriate data or methods.

View Article and Find Full Text PDF