Publications by authors named "Liliana B Falco"

Background: Soil-dwelling organisms populate the spaces-referred to as interstices-between the litter on the soil surface and the pores in the soil's organo-mineral matrix. These organisms have pivotal roles in soil ecosystem functions, such as the breakdown and decomposition of organic matter, the dispersal of bacterial and fungal spores and biological habitat transformation. These functions, in turn, contribute to broader ecosystem services like carbon and nutrient cycling, soil organic matter regulation and both chemical and physical soil fertility.

View Article and Find Full Text PDF

Background: Soils have been studied and classified in terms of their physical and chemical characteristics, while the knowledge about biodiversity and the ecosystem processes that they support is lagging behind. Furthermore, the advance in scientific knowledge contributed by different researchers is dispersed and it is necessary to collect it to bring the big picture into focus. Today, it is possible to have the findings and data collected by different researchers, compile them and, based on technological advances, have tools that allow the information to be analysed in its entirety.

View Article and Find Full Text PDF

Ecosystem sustainable use requires reliable information about its biotic and abiotic structure and functioning. Accurate knowledge of trophic relations is central for the understanding of ecosystem dynamics, which in turn, is essential for food web stability analyzes and the development of sustainable practices. There is a rapid growth in the knowledge on how belowground biodiversity regulates the structure and functioning of terrestrial ecosystems.

View Article and Find Full Text PDF

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties.

View Article and Find Full Text PDF

Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass.

View Article and Find Full Text PDF

Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes for the selective exclusion of soil fauna by size (macro, meso, and microfauna) were filled with standardized dried leaves and placed on the same soil under different use intensities: naturalized grasslands, recent agriculture, and intensive agriculture fields.

View Article and Find Full Text PDF