Publications by authors named "Lilian M Vogl"

Diffusion is one of the most fundamental concepts in materials science, playing a pivotal role in materials synthesis, forming, and degradation. Of particular importance is solid state interdiffusion of metals which defines the usable parameter space for material combinations in the form of alloys. This parameter space can be explored on the macroscopic scale by using diffusion couples.

View Article and Find Full Text PDF

Diffusion is one of the most important phenomena studied in science ranging from physics to biology and, in abstract form, even in social sciences. In the field of materials science, diffusion in crystalline solids is of particular interest as it plays a pivotal role in materials synthesis, processing and applications. While this subject has been studied extensively for a long time there are still some fundamental knowledge gaps to be filled.

View Article and Find Full Text PDF

The creation of hollow nanomaterials based on metal oxides has become an important research topic, as they show potential in a broad range of technical applications. However, the controlled synthesis of long and at the same time thin nanotubes is still challenging. Here we present a universal approach to create ultrathin aluminum oxide nanotubes with a length/diameter ratio of >1200 and minimum wall thickness of ≤4 nm.

View Article and Find Full Text PDF

Flexible electrodes using nanowires (NWs) suffer from challenges of long-term stability and high junction resistance which limit their fields of applications. Welding via thermal annealing is a common strategy to enhance the conductivity of percolated NW networks, however, it affects the structural and mechanical integrity of the NWs. In this study we show that the decoration of NWs with an ultrathin metal oxide is a potential alternative procedure which not only enhances the thermal and chemical stability but, moreover, provides a totally different mechanism to reduce the junction resistance upon heat treatment.

View Article and Find Full Text PDF

Modern devices based on modular designs require versatile and universal sensor components which provide an efficient, sensitive, and compact measurement unit. To improve the space capacity of devices, miniaturized building elements are needed, which implies a turning away from conventional microcantilevers toward nanoscale cantilevers. Nanowires can be seen as high-quality resonators and offer the opportunity to create sensing devices on small scales.

View Article and Find Full Text PDF

A new in situ synthesis method for the growth of MoO2 nanowires via controlled thermal oxidation of MoS2 flakes is presented, going from a 2D transition metal chalcogenide to a transition metal oxide nanostructure. The wire growth is performed under an optical microscope using a heating stage with adjustable atmospheric conditions. In contrast to prevalent syntheses, this templated growth leads to highly directional wires along defined MoS2 crystallographic directions.

View Article and Find Full Text PDF