Traditionally focused on Amazonian and Atlantic rainforests, studies on the origins of high Neotropical biodiversity have recently shifted to also investigate biodiversity processes in the South American dry diagonal, encompassing Chaco, Cerrado savannas, and Caatinga seasonally dry tropical forests. The plateau/depression hypothesis states that riparian forests in the Brazilian Shield in central Brazil are inhabited by Pleistocene lineages, with shallow divergences and signatures of population expansion. Moreover, riparian forests may have acted as a vegetation network in the Pleistocene, allowing gene/species flow across the South American dry diagonal.
View Article and Find Full Text PDFWorldwide distributed tropical savannas were established only in the Miocene, with climatic cooling and rise of C4 grasses. However, there is evidence for an earlier presence of savanna-like vegetation in southern parts of South America. Here we investigated the biogeographic history of a clade of solitary bees which have endemic groups in areas covered by savannas and other types of open vegetation as well as forested areas.
View Article and Find Full Text PDFA well-known issue in phylogenetics is discordance among gene trees, species trees, morphology, and other data types. Gene-tree discordance is often caused by incomplete lineage sorting, lateral gene transfer, and gene duplication. Multispecies-coalescent methods can account for incomplete lineage sorting and are believed by many to be more accurate than concatenation.
View Article and Find Full Text PDFThe Cerrado is a wide Neotropical savanna with tremendously high endemic diversity. Yet, it is not clear what the prevalent processes leading to such diversification are. We used the Cerrado-endemic lizard Norops meridionalis to investigate the main abiotic factors that promoted genetic divergence, the timings of these divergence events, and how these relate to cryptic diversity in the group.
View Article and Find Full Text PDFThe lizard genus Kentropyx (Squamata: Teiidae) comprises nine species, which have been placed in three species groups (calcarata group, associated to forests ecosystems; paulensis and striata groups, associated to open ecosystems). We reconstructed phylogenetic relationships of Kentropyx based on morphology (pholidosis and coloration) and mitochondrial DNA data (12S and 16S), using maximum parsimony and Bayesian methods, and evaluated biogeographic scenarios based on ancestral areas analyses and molecular dating by Bayesian methods. Additionally, we tested the life-history hypothesis that species of Kentropyx inhabiting open ecosystems (under seasonal environments) produce larger clutches with smaller eggs and that species inhabiting forest ecosystems (under aseasonal conditions) produce clutches with fewer and larger eggs, using Stearns' phylogenetic-subtraction method and canonical phylogenetic ordination to take in to account the effects of phylogeny.
View Article and Find Full Text PDFWe present a phylogenetic analysis of teiid lizards based on partitioned and combined analyses of 12S and 16S mitochondrial DNA sequences, and morphological and ultrastructural characters. There were some divergences between 12S and 16S cladograms, but phylogenetic analyses of the combined molecular data corroborated the monophyly of Tupinambinae, Teiinae, and "cnemidophorines", with high support values. The total combined analysis (molecules+morphology) produced similar results, with well-supported Teiinae and "cnemidophorines".
View Article and Find Full Text PDF