This article describes the synthesis of a difluorinated CinNapht derivative in the 4' and 5' positions allowing the easy access to two new families of fluorophores by late-stage functionalization using SNAr. The first one comprises derivatives incorporating hindered aromatic amines in the 4' and 5' positions, which show red-emission in apolar solvents. The second one is obtained through the use of dinucleophiles.
View Article and Find Full Text PDFRecently, the control of dynamic chirality has emerged as a powerful strategy to design chiral functional materials. In this context, we describe herein a molecular design in which a tethered configurationally stable binaphthyl chiral unit efficiently controls the dynamic chirality of donor-acceptor fluorophores, involving diverse indolocarbazoles as electron donors and terephthalonitrile as an electron acceptor. The high conformational discrimination in such a molecular system suggested by density functional theory calculations is experimentally probed using electronic and vibrational circular dichroism and confirmed by the crystallization of these chiral molecules in gel and their single crystal X-ray diffraction analysis.
View Article and Find Full Text PDFThis article describes the synthesis and photophysical properties of Aggregation-Induced Emission (enhancement) luminogens derivated from CinNaphts dyes. These fluorophores can be obtained in good yields in a single SNAr step of a fluorinated CinNapht derivative by incorporating hindered aromatic amines. They exhibit AIE(E) behavior associated with solid-state fluorescence covering an emission range from 563 to 722 nm.
View Article and Find Full Text PDF