Publications by authors named "Lilian E van Vlerken"

Although cancer is largely seen as a disease stemming from genetic mutations, evidence has implicated epigenetic regulation of gene expression as a driving force for tumorigenesis. Epigenetic regulation by histone modification, specifically through polycomb group (PcG) proteins such as EZH2 and BMI-1, is a major driver in stem cell biology and is found to be correlated with poor prognosis in many tumor types. This suggests a role for PcG proteins in cancer stem cells (CSCs).

View Article and Find Full Text PDF

Normal development and homeostasis requires a carefully coordinated gene expression program. Appropriate transcriptional regulation is maintained, in part, through epigenetic modifications of both DNA and histones. It is now apparent that the epigenetic landscape is complex and carefully controlled to both silence and activate gene transcription and that these states remain exquisitely poised for reversal.

View Article and Find Full Text PDF

The development of multidrug resistance (MDR) is a major hindrance to cancer eradication as it renders tumors unresponsive to most chemotherapeutic treatments and is associated with cancer resurgence. This study describes a novel mechanism to overcome MDR through a polymer-blend nanoparticle platform that delivers a combination therapy of C6-ceramide (CER), a synthetic analog of an endogenously occurring apoptotic modulator, together with the chemotherapeutic drug paclitaxel (PTX), in a single formulation. The PTX/CER combination therapy circumvents another cellular mechanism whereby MDR develops, by lowering the threshold for apoptotic signaling.

View Article and Find Full Text PDF

In this study, the effect of MDR-1 gene silencing, using small interfering RNA (siRNA), and paclitaxel (PTX) co-therapy in overcoming tumor multidrug resistance was examined. Poly(ethylene oxide)-modified poly(beta-amino ester) (PEO-PbAE) and PEO-modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles were formulated to efficiently encapsulate MDR-1 silencing siRNA and PTX, respectively. Upon administration in multidrug resistant SKOV3(TR) human ovarian adenocarcinoma cells, siRNA-mediated MDR-1 gene silencing was evident at 100 nM dose.

View Article and Find Full Text PDF

In this study, we have investigated the biodistribution and pharmacokinetic analysis of paclitaxel (PTX) and the apoptotic signaling molecule, C6-ceramide (CER), when administered in a multifunctional polymer-blend nanoparticle formulation to female nude mice bearing an orthotopic drug sensitive MCF7 and multidrug resistant MCF7 TR (MDR-1 positive) human breast adenocarcinoma. A polymer-blend nanoparticle system was engineered to incorporate temporally controlled sequential release of the combination drug payload. Hereby, PTX was encapsulated in the pH-responsive rapid releasing polymer, poly(beta-amino ester) (PbAE), while CER was present in the slow releasing polymer, poly(D,L-lactide-co-glycolide) (PLGA) within these blend nanoparticles.

View Article and Find Full Text PDF

The development of resistance to variety of chemotherapeutic agents is one of the major challenges in effective cancer treatment. Tumor cells are able to generate a multi-drug resistance (MDR) phenotype due to microenvironmental selection pressures. This review addresses the use of nanotechnology-based delivery systems to overcome MDR in solid tumors.

View Article and Find Full Text PDF

Although multidrug resistance (MDR) is known to develop through a variety of molecular mechanisms within the tumor cell, many tend to converge toward the alteration of apoptotic signaling. The enzyme glucosylceramide synthase (GCS), responsible for bioactivation of the proapoptotic mediator ceramide to a nonfunctional moiety glucosylceramide, is overexpressed in many MDR tumor types and has been implicated in cell survival in the presence of chemotherapy. The purpose of this study was to investigate the therapeutic strategy of coadministering ceramide with paclitaxel, a commonly used chemotherapeutic agent, in an attempt to restore apoptotic signaling and overcome MDR in the human ovarian cancer cell line SKOV3.

View Article and Find Full Text PDF

The success of anti-cancer therapies largely depends on the ability of the therapeutics to reach their designated cellular and intracellular target sites, while minimizing accumulation and action at non-specific sites. Surface modification of nanoparticulate carriers with poly(ethylene glycol) (PEG)/poly(ethylene oxide) (PEO) has emerged as a strategy to enhance solubility of hydrophobic drugs, prolong circulation time, minimize non-specific uptake, and allow for specific tumor-targeting through the enhanced permeability and retention effect. Furthermore, PEG/PEO modification has emerged as a platform for incorporation of active targeting ligands, thereby providing the drug and gene carriers with specific tumor-targeting properties through a flexible tether.

View Article and Find Full Text PDF

The use of nanoparticles as drug delivery vehicles for anticancer therapeutics has great potential to revolutionise the future of cancer therapy. As tumour architecture causes nanoparticles to preferentially accumulate at the tumour site, their use as drug delivery vectors results in the localisation of a greater amount of the drug load at the tumour site; thus improving cancer therapy and reducing the harmful nonspecific side effects of chemotherapeutics. In addition, formulation of these nanoparticles with imaging contrast agents provides a very efficient system for cancer diagnostics.

View Article and Find Full Text PDF

Corticotropin-releasing hormone is a main regulator of mammalian stress response by stimulating pituitary proopiomelanocortin (POMC) gene expression, and thus adrenocorticotropic hormone (ACTH) secretion, which then causes glucocorticoid release from the adrenal. In a recent study in the pituitary corticotroph cell line AtT20, oxidative stress stimulated the activity of nuclear transcription factor B (NF-kappaB), whereas corticotropin-releasing hormone (CRH) inhibited both the constitutive and the oxidative stress-induced NF-kappaB DNA-binding activity. To further investigate the role of NF-kappaB on the CRH-induced pituitary POMC gene activation, AtT20 cells were transiently transfected with a POMC-luciferase construct mutated at an NF-kappaB binding site.

View Article and Find Full Text PDF