Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood.
View Article and Find Full Text PDFCarbon catabolite repression (CCR) mediated by CRE1 in Trichoderma reesei emerged as a mechanism by which the fungus could adapt to new environments. In the presence of readily available carbon sources such as glucose, the fungus activates this mechanism and inhibits the production of cellulolytic complex enzymes to avoid unnecessary energy expenditure. CCR has been well described for the growth of T.
View Article and Find Full Text PDFWe defined the role of the transcriptional factor-XYR1-in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources.
View Article and Find Full Text PDFBackground: Trichoderma reesei is used for industry-scale production of plant cell wall-degrading enzymes, in particular cellulases, but also xylanases. The expression of the encoding genes was so far primarily investigated on the level of transcriptional regulation by regulatory proteins. Otherwise, the impact of chromatin remodelling on gene expression received hardly any attention.
View Article and Find Full Text PDFThe ascomycete Trichoderma reesei is one of the most well-studied cellulolytic fungi and is widely used by the biotechnology industry in the production of second generation bioethanol. The carbon catabolite repression (CCR) mechanism adopted by T. reesei is mediated by the transcription factor CRE1.
View Article and Find Full Text PDFIn this work, we report the in silico identification of the cis-regulatory elements for XYR1 and CRE1 proteins in the filamentous fungus Trichoderma reesei, two regulators that play a central role in the expression of cellulase genes. Using four datasets of condition-dependent genes from RNA-seq and RT-qPCR experiments, we performed unsupervised motif discovery and found two short motifs resembling the proposed binding consensus for XYR1 and CRE1. Using these motifs, we analysed the presence and arrangement of putative cis-regulatory elements recognized by both regulators and found that shortly spaced sites were more associated with XYR1- and CRE1-dependent promoters than single, high-score sites.
View Article and Find Full Text PDFBackground: The filamentous fungus Trichoderma reesei is a major producer of lignocellulolytic enzymes utilized by bioethanol industries. However, to achieve low cost second generation bioethanol production on an industrial scale an efficient mix of hydrolytic enzymes is required for the deconstruction of plant biomass. In this study, we investigated the molecular basis for lignocellulose-degrading enzyme production T.
View Article and Find Full Text PDFGene Expr Patterns
March 2014
Trichoderma reesei is the most important fungus for the industrial production of enzymes to biomass deconstruction. Most of the genes encoding cellulases and hemicellulases are regulated by the transcription factors CRE1 and XYR1. In this work, the regulation of 22 genes of cellulases and xylanases by these transcription factors was investigated under three different carbon sources.
View Article and Find Full Text PDF