The flu season is caused by a combination of different pathogens, including influenza viruses (IVS), that cause the flu, and non-influenza respiratory viruses (NIRVs), that cause common colds or influenza-like illness. These viruses exhibit similar dynamics and meteorological conditions have historically been regarded as a principal modulator of their epidemiology, with outbreaks in the winter and almost no circulation during the summer, in temperate regions. However, after the emergence of SARS-CoV2, in late 2019, the dynamics of these respiratory viruses were strongly perturbed worldwide: some infections displayed near-eradication, while others experienced temporal shifts or occurred "off-season".
View Article and Find Full Text PDFExperimental evolution studies with microorganisms such as bacteria and yeast have been an increasingly important and powerful tool to draw long-term inferences of how microbes interact. However, while several strains of the same species often exist in natural environments, many ecology and evolution studies in microbes are typically performed with isogenic populations of bacteria or yeast. In the present study, we firstly perform a genotypic and phenotypic characterization of two laboratory and eight natural strains of the yeast .
View Article and Find Full Text PDFEpigenetic, non-DNA sequence-based inheritance can potentially contribute to adaptation but, due to its transient nature and the difficulty involved in uncoupling it from genetic variation, it is unclear whether it has any effect on long-term evolution. However, short-term epigenetic inheritance may interact with genetic change by modifying the rate and type of adaptive mutations. Here, we test this notion in an experimental evolution set-up in yeast.
View Article and Find Full Text PDFWhether or not evolution by natural selection is predictable depends on the existence of general patterns shaping the way mutations interact with the genetic background. This interaction, also known as epistasis, has been observed during adaptation (macroscopic epistasis) and in individual mutations (microscopic epistasis). Interestingly, a consistent negative correlation between the fitness effect of beneficial mutations and background fitness (known as diminishing returns epistasis) has been observed across different species and conditions.
View Article and Find Full Text PDFChromosomal rearrangements are mutations contributing to both within and between species variation; however their contribution to fitness is yet to be measured. Here we show that chromosomal rearrangements are pervasive in natural isolates of Schizosaccharomyces pombe and contribute to reproductive isolation. To determine the fitness effects of chromosome structure, we constructed two inversions and eight translocations without changing the coding sequence.
View Article and Find Full Text PDFMutation is the primary source of variation in any organism. Without it, natural selection cannot operate and organisms cannot adapt to novel environments. Mutation is also generally a source of defect: many mutations are not neutral but cause fitness decreases in the organisms where they arise.
View Article and Find Full Text PDFGenes are regulated because their expression involves a fitness cost to the organism. The production of proteins by transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key metabolic network, the lactose utilization pathway in Escherichia coli.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2010
Knowledge of the mutational parameters that affect the evolution of organisms is of key importance in understanding the evolution of several characteristics of many natural populations, including recombination and mutation rates. In this study, we estimated the rate and mean effect of spontaneous mutations that affect fitness in a mutator strain of Escherichia coli and review some of the estimation methods associated with mutation accumulation (MA) experiments. We performed an MA experiment where we followed the evolution of 50 independent mutator lines that were subjected to repeated bottlenecks of a single individual for approximately 1150 generations.
View Article and Find Full Text PDFPopulations of organisms are generally organized in a given spatial structure. However, the vast majority of population genetic studies are based on populations in which every individual competes globally. Here we use experimental evolution in Escherichia coli to directly test a recently made prediction that spatial structure slows down adaptation and that this cost increases with the mutation rate.
View Article and Find Full Text PDFEvolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10(-5) per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%.
View Article and Find Full Text PDF