Introduction: The role of macrophages in tumor progression has generated contradictory evidence. We had previously demonstrated the ability of peritoneal macrophages from LMM3 murine mammary adenocarcinoma-bearing mice (TMps) to increase the angiogenicity of LMM3 tumor cells, mainly through polyamine synthesis. Here we investigate the ability of the parasympathetic nervous system to modulate angiogenesis induced by TMps through the activation of the muscarinic acetylcholine receptor (mAchR).
View Article and Find Full Text PDFNeoangiogenesis is essential for tumor and metastasis growth, but this complex process does not follow the same activation pathway, at least in tumor cell lines originated from different murine mammary adenocarcinomas. LMM3 cells were the most potent to stimulate new blood vessel formation. This response was significantly reduced by preincubating cells with indomethacin and NS-398, non-selective cyclooxygenase (COX) and COX-2 selective inhibitors, respectively.
View Article and Find Full Text PDFNeovascularization, an essential step for tumor progression and metastasis development, can be modulated by the presence of macrophages (Mps) in the tumor microenvironment. The ability of Mps to regulate the angiogenicity of the LMM3 tumor cell line was studied. Peritoneal Mps from LMM3 tumor-bearing mice (TMps) potentiate in vivo LMM3 angiogenicity.
View Article and Find Full Text PDFInvestigations on the influence of the parasympathetic nervous system via muscarinic signaling in tumor progression have produced contradictory evidence. We investigated the expression of muscarinic acetylcholine receptors (mAchR) and their intracellular transduction pathways, in two murine mammary adenocarcinoma cell lines, LM3 and LM2 in comparison with the normal murine mammary epithelial cell line: NMuMG. Saturation binding assays with the tritiated muscarinic antagonist quinuclidinyl benzilate ([3H]-QNB) indicate that LM3 cells express higher amounts of mAchR than LM2 cells.
View Article and Find Full Text PDFRegional lymph nodes are important in the generation of tumor-directed immune responses. The relationship between nitric oxide synthase (NOS) expression and the biological behavior of tumor-draining lymph node (TDLNs) cells in vivo was determined using a spontaneously arising BALB/c mammary adenocarcinoma S13. We first demonstrated a reduction of tumor size and tumor-induced angiogenesis by blocking NOS activity in vivo.
View Article and Find Full Text PDF