Publications by authors named "Lili Xuan"

An electro-coagulation (EC) process combined with added free nitrous acid (FNA) improves sludge dewaterability. Under optimal conditions(EC voltage of 25 V, EC process time of 60 min, FNA dosage of 1.13 mg/L, pH value of 4.

View Article and Find Full Text PDF

In this study, we proposed an advanced oxidation process of pyrite (FeS) and peroxymonosulfate (PMS) and prepared a modified polyaluminum chloride biochar (P-BC). The motivation is to use the combination of FeS + PMS + P-BC to improve waste activated sludge (WAS) dewaterability. The method to improve the sludge dewatering effect with the combination of FeS + PMS + P-BC is as follows: in the first step, pour 0.

View Article and Find Full Text PDF

Melanoma is one of the deadliest forms of cancer, for which therapeutic regimens are usually limited by the development of resistance. Here, we fabricated FeO nanoparticle clusters (NPCs), which have drawn widespread attention, and investigated their role in the treatment of melanoma by photothermal therapy (PTT). Scanning electron microscopy imaging shows that our synthesized NPCs are spherical with an average diameter of 329.

View Article and Find Full Text PDF

In recent years, there has been a growing concern about heavy metal contamination in sediments. In this study, iron-based granular biochar (MGB) is prepared to remediate Cu and Pb contaminated sediments. Characterizations via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that the rough surface of MGB with abundant pore structures and a large number of oxygen-containing functional groups that facilitate stabilization of Cu and Pb in sediments.

View Article and Find Full Text PDF

Freeze-thaw (F/T) and electrochemistry both are environment-friendly and efficient sludge treatment technologies. In this study, the sludge samples were frozen at - 15 °C, and 20% g/gTss activated carbon (AC) was added to the dissolved sludge. Finally, the uniformly mixed sludge was treated at a voltage of 15 V for 25 min.

View Article and Find Full Text PDF

The problem of heavy metal pollution in sediments attracts increasing attention with the process of industrialization. In this study, a novel sediments amendment granular activated carbon (GAC)-supported titanium dioxide nanoparticles (GATN) was synthesized to amend copper (Cu)-contaminated sediments. The effect of the amendments on the potential mobility and bioavailability of Cu was evaluated by the concentration of Cu in the overlying water and the chemical speciations of Cu in sediments.

View Article and Find Full Text PDF

After much effort, the remediation of heavy metal contaminated sediments still remains physically hard and technically challenging issue to resolve. In this study, granular activated carbon-supported titanium dioxide nanoparticles (GAC-TiO NPs) are synthesized to remedy heavy metal copper (Cu) contaminated sediments. The concentration and chemical speciation of Cu in overlying water, interstitial water and contaminated sediments are fully assessed to examine the remediation effect of GAC-TiO NPs.

View Article and Find Full Text PDF

Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression.

View Article and Find Full Text PDF

Emerging evidence showed that long noncoding RNA (lncRNA) plays crucial roles in regulating various cancer biological behaviors. Titin-antisense RNA1 (TTN-AS1) has been reported to have crucial roles in cancers but its role in ovarian cancer remains unknown. The levels of TTN-AS1, microNRA-15b-5p (miR-15b-5p), and F-box and WD repeat domain containing 7 (FBXW7) in ovarian cancer cells were measured by quantitative reverse-transcription PCR.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is vital for maintaining lipid homeostasis in prostate cancer (PCa) cells, which have an increased rate of de novo fatty acid (FA) synthesis. Mutations in the gene encoding the tumor suppressor speckle-type POZ protein (SPOP), which is a E3 ubiquitin ligase, are a critical feature of PCa. Here, we provide evidence that FASN is a substrate of SPOP and that interaction of these proteins induces FASN ubiquitination and proteasome-dependent degradation.

View Article and Find Full Text PDF

Objective: To explore the changes of paclitaxel sensitivity by RNA interference of RhoC gene in ovarian cancer cell lines.

Methods: The microRNA (miRNA) targeting RhoC gene was designed and synthesized by in vitro transcription and transfected into ovarian cancer cell line SKOV3. The mRNA and protein of RhoC were detected by the means of RT-PCR and Western blot.

View Article and Find Full Text PDF