Publications by authors named "Lili Lyu"

Dissolved organic matter (DOM) plays a significant role in aquatic biogeochemical processes and the carbon cycle. As global climate warming continues, it is anticipated that the composition of DOM in lakes will be altered. This could have significant ecological and environmental implications, particularly in frozen ground zones.

View Article and Find Full Text PDF

The spatiotemporal variability of lake partial carbon dioxide pressure (CO) introduces uncertainty into CO flux estimates at the lake water-air interface. Knowing the variation pattern of CO is important for obtaining accurate global estimation. Here we examine seasonal and trophic variations in lake CO based on 13 field campaigns conducted in Chinese lakes from 2017 to 2021.

View Article and Find Full Text PDF

Chlorophyll-a (Chla) in inland waters is one of the most significant optical parameters of aquatic ecosystem assessment, and long-term and daily Chla concentration monitoring has the potential to facilitate in early warning of algal blooms. MOD09 products have multiple observation advantages (higher temporal, spatial resolution and signal-to-noise ratio), and play an extremely important role in the remote sensing of water color. For developing a high accuracy machine learning model of remotely estimating Chla concentration in inland waters based on MOD09 products, this study proposed an assumption that the accuracy of Chla concentration retrieval will be improved after classifying water bodies into three groups by suspended particulate matter (SPM) concentration.

View Article and Find Full Text PDF

Cyanobacterial blooms release a large number of algal toxins (e.g., Microcystins, MCs) and seriously threaten the safety of drinking water sources what the SDG 6.

View Article and Find Full Text PDF

Previous research has shown that ocular dominance can be biased by prolonged attention to one eye. The ocular-opponency-neuron model of binocular rivalry has been proposed as a candidate account for this phenomenon. Yet direct neural evidence is still lacking.

View Article and Find Full Text PDF

In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal.

View Article and Find Full Text PDF

Total suspended matter (TSM) as a critical water quality parameter is closely linked with nutrients, micropollutants, and heavy metals threatening the ecological health of aquatic ecosystems. However, the long-term spatiotemporal dynamics of lake TSM in China and their response to natural and anthropogenic factors are rarely explored. In this study, based on Landsat top-of-atmosphere (TOA) reflectance embedded in GEE and in-situ TSM data collecting in the periods 2014-2020, we developed a unified empirical model (R = 0.

View Article and Find Full Text PDF

The pollution or eutrophication affected by dissolved organic matter (DOM) composition and sources of inland waters had attracted concerns from the public and government in China. Combined with remote sensing techniques, the fluorescent DOM (FDOM) parameters accounted for the important part of optical constituent as chromophoric dissolved organic matter (CDOM) was a useful tool to trace relative DOM sources and assess the trophic states for large-scale regions comprehensively and timely. Here, the objective of this research is to calibrate and validate a general model based on Landsat 8 OLI product embedded in Google Earth Engine (GEE) for deriving humification index (HIX) based on EEMs in lakes across China.

View Article and Find Full Text PDF

Dissolved organic matter (DOM), a heterogeneous mixture of diverse compounds with different molecular weights, is crucial for the lake carbon cycle. The properties and concentration of DOM in lakes are closely related to anthropogenic activities, terrigenous input, and phytoplankton growth. Thus, the lake's trophic state, along with the above factors, has an important effect on DOM.

View Article and Find Full Text PDF

Total suspended matter (TSM), as an indicator of the concentration of fine materials in the water column including particulate nutrients, pollutants, and heavy metals, is widely used to monitor aquatic ecosystems. However, the long-term spatiotemporal variations of TSM in lakes across the Tibetan Plateau (TP) and their response to environmental factors are rarely explored. Accordingly, taking advantage of the Landsat top-of-atmosphere reflectance and in-situ data, an empirical model (R = 0.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays an essential role in the global carbon biogeochemical cycle for aquatic ecosystems. The complexity of DOM compounds contributes to the accurate monitoring of its sources and compositions from large-scale patterns to microscopic molecular groups. Here, this study demonstrates the diverse sources and compositions for humic-rich lakes and protein-rich lakes for large-scale regions across China with the linkage to optical components and molecular high-resolution mass spectrometry properties.

View Article and Find Full Text PDF

The Trophic state index (TSI) is a vital parameter for aquatic ecosystem assessment. Estimating TSI by remote sensing is still a challenge due to the multivariate complexity of the eutrophication process. A comprehensive in situ spectral-biogeochemical dataset for 7 lakes in Northeast China was collected in October 2020.

View Article and Find Full Text PDF

It is well known how selective attention biases information processing in real time, but few work investigates the aftereffects of prolonged attention, let alone the underlying neural mechanisms. To examine perceptual aftereffect after prolonged attention to a monocular pathway, movie images played normally were presented to normal adult's one eye (attended eye), while movie images of the same episode but played backwards were presented to the opposite eye (unattended eye). One hour of watching this dichoptic movie caused a shift of perceptual ocular dominance towards the unattended eye.

View Article and Find Full Text PDF

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend.

View Article and Find Full Text PDF

In this study, we empirically developed a robust model (the Root Mean Square Error (RMSE), bias, NSE and RE were 26.63 mg/L, -4.86 mg/L, 0.

View Article and Find Full Text PDF

Lake clarity, usually measured by Secchi disc depth (SDD), is a reliable proxy of lakes trophic status due to its close link with total suspended matter, chlorophyll-a, and nutrients. Trained with in-situ measured SDD and match-up Landsat images, we established various regression models to estimate SDD for global lakes. We selected a unified model which demonstrated good spatiotemporal transferability, and has potential to map SDD in different years with good quality of Landsat top-of-atmosphere (TOA) images embedded in Google Earth Engine (GEE).

View Article and Find Full Text PDF

Selective attention is essential when we face sensory inputs with distractions. In the past decades, Lavie's load theory of selective attention delineates a complete picture of distractor suppression under different attentional control load. The present study was originally designed to explore how reward modulates the load effect of attentional selection.

View Article and Find Full Text PDF

Reservoirs were critical sources of drinking water for many large cities around the world, but progress in the development of large-scale monitoring protocols to obtain timely information about water quality had been hampered by the complex nature of inland waters and the various optical conditions exhibited by these aquatic ecosystems. In this study, we systematically investigated the absorption coefficient of different optically-active constituents (OACs) in 120 reservoirs of different trophic states across five eco-regions in China. The relationships were found between phytoplankton absorption coefficient at 675 nm (a (675)) and Chlorophyll a (Chla) concentration in different regions (R:0.

View Article and Find Full Text PDF

The Yellow River is the second largest river in China. Carbon transport by the Yellow River has significant influence on riverine carbon cycles in Asia. During the wet season, the riverine carbon was mainly found in dissolved form, i.

View Article and Find Full Text PDF

Water clarity, denoted by the Secchi disk depth (SDD), is one of the most important indicators for monitoring water quality. In the Songhua River basin (SHRB), few studies have used Landsat to monitor long-term (3-4 decades) changes in lake SDD and explore the impact of natural and human factors on SDD interannual variation at the watershed scale. Lakes in the SHRB are of great significance to local populations.

View Article and Find Full Text PDF

The optical signature of chromophoric dissolved organic matter (CDOM) has been related to sources and composition of dissolved organic matter (DOM) in surface waters, but the spatial scope of previous research has been limited to single cities with no studies exploring patterns across gradients of development/industrialization or latitude. Using EEM (excitation emission matrix) techniques, a study was conducted to examine optical properties of CDOM in urban waters along a gradient of urban development (developed and undeveloped cities) and industries (primary, secondary, tertiary). The optical properties of CDOM were measured in 436 water samples collected from urbanized waterbodies spanning 93 cities across China.

View Article and Find Full Text PDF

Landscape urbanization broadly alter watersheds ecosystems, yet the impact of nonpoint source urban inputs on dissolved organic matter (DOM) amount, composition and source is poorly understood. To systematically examine how DOM optical index and composition varied with urbanization, a unique long term observation dataset (4 years) of fluorescence excitation emission matrices (EEMs) was collected from two types of waters: urban waters and non-urban waters. Two humic-like DOM fluorescent components (C1 and C2) and one protein-like component (C3) were identified by parallel factor analysis (PARAFAC), and the results indicated that urbanization had an important influence on DOM concentration and composition, with urban waters having a high degree of DOM variation due to different land use surrounding each body of water.

View Article and Find Full Text PDF

Lake eutrophication has attracted the attention of the government and general public. Chlorophyll-a (Chl-a) is a key indicator of algal biomass and eutrophication. Many efforts have been devoted to establishing accurate algorithms for estimating Chl-a concentrations.

View Article and Find Full Text PDF

As important components of dissolved organic matter (DOM) in an aquatic environment, colored DOM (CDOM) and dissolved organic carbon (DOC) play an essential role in the carbon cycle of an inland aquatic system. Traditionally, CDOM and DOC in inland waters have been primarily determined using in situ observations and laboratory measurements. Most of past lake investigations on CDOM and DOC focused on easily accessible regions and covered a small fraction of lakes worldwide.

View Article and Find Full Text PDF

Chromophoric dissolved organic matter (DOM) is called as CDOM which could affect the optical properties of surface waters, and is a useful parameter for monitoring complex inland aquatic systems. Large-scale monitoring of CDOM using remote-sensing has been a challenge due to the poor transferability of CDOM retrieval models across regions. To overcome these difficulties, a study is conducted using Sentinel-2 images, in situ reflectance spectral data, and water chemical parameters at 93 water reservoirs across China classified by trophic state.

View Article and Find Full Text PDF