J Environ Qual
December 2024
Simple models can help reduce nitrogen (N) loss from land and protect water quality. However, the complexity of primary production systems may impair the accuracy of simple models. A tool was developed that assessed the risk of N loss as the product of N source inputs and relative transport by leaching and runoff.
View Article and Find Full Text PDFRisk index tools have the potential to assist farmers in making strategic decisions regarding their farm design to manage losses of nutrients. Such tools require a vulnerability framework, and these are often based on scores or rankings. These frameworks struggle to take account of interactions between elements of the physical environment.
View Article and Find Full Text PDFAgricultural production has economic, environmental, social and cultural consequences beyond farm boundaries, but information about these impacts is not readily available to decision makers. This study applied the land use suitability concept by carrying out an assessment of a region that has the potential for intensification of agricultural production, but where eutrophication of river and estuary receiving environments due to nitrogen enrichment is a significant issue. The assessment evaluated three indicators for each farmable land parcel in the region: productive potential (the inherent productive and economic potential of the parcel), relative contribution (the potential for the parcel to contribute nitrogen to receiving environments compared to other land parcels), and pressure (the load of nitrogen delivered to receiving environments compared to the loads that ensure environmental objectives are achieved).
View Article and Find Full Text PDFAgroecosystem models have become an important tool for impact assessment studies, and their results are often used for management and policy decisions. Soil information is a key input for these models, yet site-specific soil property data are often not available, and soil databases are increasingly being used to provide input parameters. For New Zealand, the digital spatial soil information system S-map provides geospatial data on a range of soil characteristics, including estimates of soil water properties.
View Article and Find Full Text PDFIodine (I) is an essential trace element commonly deficient in agricultural systems. Whereas there is much information on I in food crops, there is a lacuna of knowledge on the environmental factors that affect pasture I concentrations. We aimed to identify the most important environmental factors affecting the concentration of I in New Zealand pastures, and the consequences to agricultural systems.
View Article and Find Full Text PDFReducing conditions are necessary for denitrification, thus the groundwater redox status can be used to identify subsurface zones where potentially significant nitrate reduction can occur. Groundwater chemistry in two contrasting regions of New Zealand was classified with respect to redox status and related to mappable factors, such as geology, topography and soil characteristics using discriminant analysis. Redox assignment was carried out for water sampled from 568 and 2223 wells in the Waikato and Canterbury regions, respectively.
View Article and Find Full Text PDFSoil depletion and degradation have been increasingly recognized as important environmental issues in many parts of the world. Over the last decade a number of political and legislative measures have been introduced to encourage and enforce sustainable soil management in New Zealand. Application of the new legislation has highlighted gaps in our knowledge of soil quality and a lack of scientific methods to assess and monitor soil quality.
View Article and Find Full Text PDF